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ABSTRACT. — Mangroves are known to stabilise coastal sediments through their above-
ground aerial root complex. The results presented in this paper suggest that the grey mangrove
Avicennia marina has the ability to adapt its pneumatophores to micro-topographical irregularities
in the otherwise regularly sloping intertidal zone. The difference in height above datum (and thus
in hydrological regime) in this study was as little as 15 cm higher as opposed to that for the sur-
rounding mangrove soil. Significantly higher pneumatophore densities and total pneumatophore
lengths were observed in the centre of the landward depression, and significantly lower below-
ground pneumatophore length in the centre of the seaward depression. The mangrove’s adapta-
tions to these localised topographic differences are important in view of changes in intertidal
hydrology, the latter being linked to changes in topography. We emphasize the need to consider
the effect of topography in the intertidal environment of mangroves more closely in the future on
different ecological scales (individual adaptation — regeneration of the entire population) and
under different scenarios of change (direct anthropogenic impact — changes in sea level).
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INTRODUCTION

Mangrove species have developed many
morphological and physiological adaptations
that are essential for them to survive in the harsh
intertidal zone in which they grow. Adaptations
include aerial roots, salt balance, vivipary and
hydrochory (TOMLINSON 1986). Whereas most
mangrove species display a choice for optimal
conditions for their growth, others have devel-
oped an ability to withstand a wide range of
global and local conditions (e.g., BALL 1988).

Of all mangroves, Avicennia marina (Forssk.)
Vierh. has the largest latitudinal spread (cf.
SPALDING et al. 1997), and on a regional scale, it
has been shown to adapt to varying climatic
conditions by adjusting its phenology (DUKE
1990). This species-specific plasticity has also
been found on a much larger scale, as this
species displays differential population struc-
tures at different latitudes (OSUNKOYA & CREESE
1997). Even within a particular mangrove forest
Avicennia marina has shown to be one of the
most eurytopic species along environmental
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Table 1. Overview of countries or regions where a ‘double’ or ‘disjunct’ zonation of Avicen-
nia marina has been observed within sites with multiple mangrove species. The number of
true mangrove species for the respective country is given according to SPALDING et al.
(1997), but may differ on a local scale. For some countries more recent corrected species
numbers have been given. This overview obviously excludes references to areas where A.
marina occurs as the sole mangrove species (e.g., monospecific stands at latitudinal distri-
bution limits).

Country or region ~ Number of true Reference(s)
mangrove species

Indo-West Pacific  up to 45 MACNAE (1968)

East-Africa 11 WALTER & STEINER (1936)
GALLIN et al. (1989), DAHDOUH-GUEBAS et al.

Kenya 10 (1998), MATTHUS et al. (1999), DAHDOUH-
GUEBAS et al. (2002a,b, 2004a,b)

India 28 SATYANARAYANA et al. (2002)

Malaysia 36 WATSON (1928)

Australia, NT 37 BUNT (1996), WOODROFFE & GRIME (1999)

Australia, QLD 37 MACNAE (1969), BUNT (1996), CLARKE (2004)

gradients, which is particularly well illustrated
by the appearance of a ‘double’ or ‘disjunct’
intertidal zonation in many parts of the world
(Table 1). Such a zonation has been occasion-
ally reported as observations (JOHNSTONE 1983,
SMITH 1992, OCHIENG & ERFTEMEUER 2002),
but recently DAHDOUH-GUEBAS et al. (2004a)
described Avicennia marina’s clear variation
in morphological and genetic characteristics
between landward and seaward zones.

Apart from effects induced by the natural
environment, mangroves are additionally
affected by direct and indirect human-induced
stresses and disturbances, some effects of which
are compounded in the intertidal zone (e.g.,
ALONGI 2002, DAHDOUH-GUEBAS et al. 2004b).
In the light of the response of mangroves to
global climatic change, and in particular of A.
marina to sea-level rise, this preliminary study
focuses on the adaptation of the pencil-root!
complex of A. marina to changes in micro-
topography. DAHDOUH-GUEBAS et al. (2004a)
demonstrated that root density and length were
dependent on the intertidal zone in which the

tree was growing. The objective of the present
study was to investigate whether very shallow
and local micro-topographic depressions (0.2 —
0.4 m) have an effect on 4. marina pneu-
matophore density or on their above- and below-
ground length. Our hypothesis was that there
exists a trend in the density and the length of
pneumatophores from the centre of a small
depression (high/long) towards the edges (lower/
shorter) in both landward and seaward A. marina
zones.

MATERIAL AND METHODS

The study was conducted in the Kenyan man-
grove area near Gazi (Fig. 1), for which the disjunct
zonation of Avicennia marina has been described
earlier (DAHDOUH-GUEBAS et al. 2002a,b, 2004a,b).
The two Avicennia zones are located along the inter-
tidal slope and are separated by approximately 100
m. Between these two Avicennia fringes, the man-
grove vegetation is composed of other species, such
as Rhizophoraceae. The spring tidal amplitude is
about 3.5 m, and the seaward Avicennia zone is

I Mangrove aerial roots are commonly distinguished as prop or stilt roots (e.g., Rhizophora spp.), knee-roots (e.g.,
Bruguiera spp.), plank and buttress roots (e.g., Xylocarpus spp.), peg roots (e.g., Sonneratia spp.), and pencil roots
(see TOMLINSON 1986). Pencil roots originate from the below-ground cable root and stick out vertically from the

soil, and are a typical feature of Avicennia species (Fig. 1).
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inundated twice daily (water column may be more
than 2 m high), whereas the landward zone is inun-
dated only during spring high tides (water column
< 0.5 m). For a detailed description of the study site,
including remotely sensed imagery and descriptive
vegetation data, see DAHDOUH-GUEBAS ef al. (2004a).
A 10 m transect was laid across a natural topographic
depression within the landward Avicennia marina
vegetation zone. An 11 m transect was used in the
seaward 4. marina vegetation zone. The landward
zone was composed entirely of 4. marina. In the sea-
ward zone A. marina was the dominant (87%)
species with some Rhizophora mucronata Lamk. and
Sonneratia alba J. Smith. Tree spread was approxi-
mately even in both zones. At 1 m intervals along
each of the transects, 1 m? quadrates were estab-
lished (14ndward = 105 Pgeawara = 11), and within each
quadrate, the number of pencil roots was counted
and their above-ground length was recorded. In addi-
tion, four randomly chosen pneumatophores per
quadrate were excavated down to the cable root in
order to measure their below-ground-length. Since
there was little variation in below-ground-length, the
average of the four measurements was added to each
of the above-ground-length measurements to obtain
the total pneumatophore length. Spearman’s rank
correlation coefficient () was used as described by
SokAL & ROHLF (1981) in order to correlate height
above datum (and thus relative depression depth)
with the variables and parameters from the root com-
plex. The height above datum was measured using a
theodolite (Nikon, Auto level AE-3G). This was
done at 1 m intervals within the depressions, and at 5
m intervals between the depressions, using a refer-
ence point or benchmark. This benchmark was the
maximum water height above datum (highest water
line), as predicted by tide tables available from the
Kenya Port Authority. We are aware that tidal predic-
tions may be off by a few centimetres, particularly in
shallow bays, but we did not attempt to measure the
actual hydro-graphic height, mainly because the
objective of this study emphasized the existing rela-
tive differences in height and their effect on the veg-
etation. All elevations were expressed as ‘meters
above datum’, and the error of the theodolite was
experimentally recorded at 3 cm.

Redox potentials of the soil were measured
with a platinum-Ag/AgCl redox electrode connected
to a pH/mV/T-meter (P601, Eijkelkamp, Agrisearch
Equipment), as described in MATTHUS et al. (1999), in
order to examine the effect of long inundation periods
at the centre of the depressions.

RESULTS

Maximum depth of the topographic depression
was 15 cm in the landward zone (3.4 m above
datum; Fig. 2a). The highest density of pneu-
matophores in the landward depression was 2 500
m at the centre of the depression (Fig. 2¢), but was
only 200 m? outside the pit. The redox potential of
the interstitial water at the centre of the landward
depression was -259 mV, while values outside the
depression were less reduced (-55 mV and -178
mV). Total pneumatophore length increased
towards the centre of the landward depression (Fig.
2a) and the relationship with height above datum
was highly significant (r,=0.71; n=10; P <0.005).
The below-ground length decreased significantly
with a lower height above datum in the landward
depression (7, = -0.86; n = 10; P < 0.001; Fig. 2a).

Maximum depth of the topographic depres-
sion was 44 c¢m in the seaward zone (1.7 m above
datum; Fig. 2b). However, there was a decrease in
below-ground pneumatophore length with a lower
height above datum (r,=-0.94; n=11; P <0.001;
Fig. 2b). There was no significant decrease in total
pneumatophore length with a lower height above
datum (r, = 0.44; n = 11; n.s.). For the seaward
depression, there seems to be no relationship
between pneumatophore density and the position
in the depression and thus height above datum
(Fig. 2b,d). The redox potential of the interstitial
water of the seaward depression was most reduced
half-way down the depression slope (-352 mV and
-386 mV), less reduced in the deepest quadrates (-
296 mV and -306 mV) and least reduced at the top
margins (-155 mV and -135 mV).

DISCUSSION

The discussion of our results is made within
the seasonal conditions that prevailed during out
field campaign (dry season). Although we are
aware that our environmental measurements of
the redox potential may be different in the wet
season, or when multiple measurements are per-
formed throughout the year, we have often
observed that the more stressful conditions shap-
ing the vegetation occurs in the dry season.
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Fig. 1. (A) Physiognomy of a landward Avicennia marina fringe in Gazi, Kenya. (B) Overview (B1) and close-up
(B2) of an 4. marina tree uprooted by tidal and wave energy. (C) Close-up of 4. marina pencil-roots and of the
micro-topographic variations (note the pathway of the incoming tide). (C) Path amongst 4. marina pneumatophores
created by walking fisherfolk. (Photographs taken by Griet Neukermans and Farid Dahdouh-Guebas)



Fig. 2. (a-b) Micro-topography and above- and below-ground pneumatophore length, and (c-d) pneumatophore density for Avicennia marina sampled across a
depression at 1 m intervals along a landward and a seaward mangrove transect.

SHIOHdOLVINNAN HAOIDONVIA NO SLOHAIT AHdVIDOJOL-OYDIN

L1T
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Observed pneumatophore density and length
in the topographic depressions are in line with the
hypothesis that pneumatophore density and
length is higher for places with longer inundation
periods (DAHDOUH-GUEBAS et al. 2004a). The
hypothesis was confirmed for pneumatophore
density and total and below-ground length in the
landward depression. In addition, the present
study revealed the sensitivity of the root complex
of Avicennia marina with respect to micro-topo-
graphical settings. It is notable that even shallow
depressions (0.2 m and 0.4 m for the landward
and seaward depression, respectively) seem to
trigger the plants to adjust their root complex sig-
nificantly. However, further investigations in a
variety of mangrove formations are necessary to
validate these results.

Decreased below-ground pneumatophore
length in the landward zone can be explained by
the sandy substrate being easily removed by
water, making the below-ground length appear
shorter. In some landward areas outside the study
area, the action of water has denuded entire root
complexes of Avicennia marina (Fig. 1B). This
removal of the substrate occurs in areas that dis-
play a sparse distribution of trees and roots, and
where small waves (< 1 m length along the topo-
graphical gradient) occur at spring tide. Pneu-
matophore length and density being higher
towards the centre of the depression may be
indicative of root growth toward more oxy-
genated surface horizons (cf. DAHDOUH-GUEBAS
et al. 2004a).

Pneumatophores in the seaward depression
generally do not reach above the high water level.
Tidal fluctuations of > 2 m in our sites cannot be
overcome by the height of pencil roots of Avicen-
nia marina (unlike peg roots in Sonneratia spp.,
pencil roots are thin throughout their length and
tend to fall over as they grow tall). An increase in
density would be beneficial, but of less impor-
tance in a depression, since the pneumatophores
are already entirely exposed to water, and not
covered by detritus.

Even though this study was conducted in a
natural 4. marina-dominated zone with an even
spread of trees, local wvariations in pneu-
matophore density may be due to tree density

(both A. marina and other species) and cable
root length (distance to tree). However, at the
place of the depressions no other species were
present. The pneumatophore density or length in
a large majority of quadrates studied consis-
tently displayed the hypothesized trend in both
depressions.

The results suggest that the grey mangrove
Avicennia marina has the ability to adapt its root
complex to micro-topographical irregularities in
the otherwise regularly sloping intertidal zone.
Although this study was carried out in Kenya, a
review of recent literature indicates that it may
apply to other mangroves dominated by A.
marina worldwide, where pneumatophore den-
sity, pneumatophore density range or microto-
pography display similarities in absolute or
relative values (Table 2). Yet, differences in
root density as a result of micro-topographic dif-
ferences have never been reported before. The
hydrological regime in this study was as
little as 15 cm higher than that for the surround-
ing mangrove soil. The mangrove species’
adaptation to this localised topographic differ-
ence is important in view of changes in intertidal
hydrodynamics, the latter of which is linked to
changes in topography. Apart from individual
adaptation, the effects on the regeneration of the
entire populations also should be considered, as
substratum heterogeneity has been found to
influence the recruitment of 4. marina (MINCHIN-
TON 2001). Changing root complexes may alter
their ability to entangle mangrove propagules
directly, or indirectly through woody debris
(StieGLITZ & RIDD 2001, KRAUSS et al. 2005).

From a human impact or management per-
spective, the observed results are of importance
and suggest that trees will react to the creation of
topographical depressions or pneumatophore
destruction, both of which may occur when peo-
ple make their way through the mangrove on foot
(Fig. 1D). Although we do not know at
what time scale the difference in pneumatophore
density and length have developed, or to which
extent it can be found in other mangrove forma-
tions, it is evident that the influence of micro-
topography merits closer attention in the future,
as it may be significant on other scales of the
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Table 2. Recent peer-reviewed papers referring to variations in pneumatophore density for mangrove species or to
the effects of micro-topographical differences (4. mar = Avicennia marina; B. gym = Bruguiera gymnorrhiza; R. api
= Rhizophora apiculata; S. alb = Sonneratia alba; X. gra = Xylocarpus granatum; n.a. = not available).

Height above Pneumatophore Species World region Reference
datum density
(number/m?)
lto3m 4-1950 A. mar Kenya DAHDOUH-GUEBAS ef al. (2004a)
n.a. 80 - 180 A. mar Mozambique MACIA et al. (2003)
n.a. 56 - 1168 A. mar Pakistan SAIFULLAH & ELAHI (1992)
n.a. 200 A. mar QLD, Australia LAEGDSGAARD & JOHNSON (2001)
n.a. ca. 65 - 80 A. mar QLD, Australia SKILLETER & WARREN (2000)
n.a. 24 - 347 A. mar QLD, Australia HARTY & CHENG (2003)
n.a. 382-718 A. mar NSW, Australia BISHOP et al. (2007)
6to 13 m 389 - 1040 A. mar NSW, Australia MELVILLE & PULKOWNIK (2007)
n.a. ca. 20 - 85 A. mar NSW, Australia KELAHER et al. (1998)
n.a. 50 - 381 A. mar NSW, Australia BURCHETT et al. (1999)
n.a. ca. 40 - 250 A. mar New Zealand YOUNG & HARVEY (1996)
n.a. 80 - 200 A. mar New Zealand ALFARO (2006)
-50 to +10 cm n.a. B. gym Micronesia FuimMoTo et al. (1995)
R. api
S. alb
X gra

mangrove ecosystem as well (e.g., vegetation
structure, dispersion processes). In addition, the
strength and density of the root complex of man-
grove trees is worth focusing on in the light of
their ability to protect coastal areas from human,
meteorological and oceanographical hazards
(BADOLA & HUSSAIN 2005, DAHDOUH-GUEBAS et
al. 2005a,b). Not only for Avicennia spp., but also
for other mangrove species there is a lack of stud-
ies relating micro-topography (rather than inter-
tidal position and intertidal height above datum)
to vegetation characteristics. We recommend that
more research be focused on the interrelation-
ships between hydrodynamics, topography and
vegetation, particularly the effects of water on the
mangroves’ root complex, and the effect of the
mangrove root complex on the water currents and
on a wide range of water-related impacts, among
which storm surges, sea-level rise, daily tidal
action, heavy El-Nifo rains and tsunamis.
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