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Deforestation results in habitat fragmentation, decreasing diver-
sity, and functional degradation. For mangroves, no data are
available on the impact of deforestation on the diversity and
functionality of the specialized invertebrate fauna, critical for their
functioning. We compiled a global dataset of mangrove inverte-
brate fauna comprising 364 species from 16 locations, classified
into 64 functional entities (FEs). For each location, we calculated
taxonomic distinctness (Δ+), functional richness (FRi), functional
redundancy (FRe), and functional vulnerability (FVu) to assess
functional integrity. Δ+ and FRi were significantly related to air
temperature but not to geomorphic characteristics, mirroring the
global biodiversity anomaly of mangrove trees. Neither of those
two indices was linked to forest area, but both sharply decreased
in human-impactedmangroves. About 60% of the locations showed
an average FRe < 2, indicating that most of the FEs comprised one
species only. Notable exceptions were the Eastern Indian Ocean and
west Pacific Ocean locations, but also in this region, 57% of the FEs
had no redundancy, placing mangroves among the most vulnerable
ecosystems on the planet. Our study shows that despite low redun-
dancy, even small mangrove patches host truly multifunctional fau-
nal assemblages, ultimately underpinning their services. However,
our analyses also suggest that even a modest local loss of inverte-
brate diversity could have significant negative consequences for
many mangroves and cascading effects for adjacent ecosystems.
This pattern of faunal-mediated ecosystem functionality is crucial
for assessing the vulnerability of mangrove forests to anthropo-
genic impact and provides an approach to planning their effective
conservation and restoration.

community ecology | functional redundancy | functional traits |
biodiversity | mangrove conservation

Mangrove forests, once dominant intertidal ecosystems in the
tropics (1), are disappearing at devastating rates worldwide

(2, 3). Estimates of their loss are often uncertain due to the nature
of available datasets (4) and the imprecision in determining
mangrove area (5), but the current consensus on mangrove loss in
the last quarter century ranges between 35 to 86% in the worst
affected countries (2). Although recent estimates show a decrease
in mangrove deforestation (6), global destruction is still happen-
ing, putting mangrove ecosystem functionality and, ultimately,
provisioning of ecosystem services at risk (7). As recently reas-
sessed (8), mangroves are unrivaled carbon sinks (9) and often
contribute significant carbon and nitrogen to offshore habitats
(10). They also act as nurseries for species from connected eco-
systems (11) and protect tropical coasts from erosion (12) as well
as extreme events (13).

As theoretical and empirical studies have shown (14, 15), spe-
cies extinctions in natural ecosystems often lead to loss in func-
tional diversity, reflected by a decrease in the number of
functional traits (16). Models predict that species-poor systems
have low functional redundancy and are more likely to experience
functional loss with species extinction (14, 17). In comparison with
many tropical terrestrial forests, mangroves are characterized by
low tree species diversity (1). The continued reduction of man-
grove area and cover, coupled with simplistic restoration efforts
often establishing monocultures (18), is expected to result in a
sharp decrease in mangrove tree biodiversity at a global scale (2).
A relationship between such decline in tree diversity and the loss
of mangrove ecosystem functionality has been assumed rather
than demonstrated (19), as this relationship has proven difficult to
measure. Significant positive correlations, however, have been
demonstrated between the species richness of mangrove trees, the
associated macrofauna, and potential influence on aboveground
primary productivity (20). The nexus between biodiversity and
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ecosystem functionality of species-poor systems is yet to be clari-
fied, but a recent study of scavenging (measured by rate of fish
carcasses consumed by scavengers) in Australian mangrove-fringed
estuaries has highlighted the vulnerability of such systems to spe-
cies loss (21).
While reliable datasets are available on global mangrove tree

diversity (1, 5), no such information exists for the species com-
position, functional diversity, and functional redundancy of the
associated fauna. The harsh environmental conditions charac-
teristic of mangrove forests (i.e., wide daily or seasonal variability
in salinity and pH, hypo-, or even anoxia of the soil) and the
small number of foundation plant species compared to terrestrial
forests (2) suggest a lower niche availability among mangrove
resident macrofauna (22).
Mangrove ecosystems support unique faunal assemblages (22,

23), including a diverse array of sessile and mobile invertebrates,
particularly crustaceans and mollusks (24, 25). Brachyuran crab
assemblages are highly diverse in Indo-West Pacific (IWP)
mangroves (25, 26) and are known to play a major role in eco-
system functioning (8, 20, 23). Their bioturbation activity has a
significant engineering effect on the sediment through constant
irrigation and oxygenation (27, 28). These crabs can also play a
critical role in shaping tree dominance (29), influencing carbon
cycling (30, 31), and structuring the sediment microbiome (32).
The diversity of mangrove-associated gastropods also peaks in
the IWP region but shows a bimodal distribution, with modes in
the eastern Pacific coast of Central and South America and in
Southeast Asia (33). Both gastropods and bivalves are known to
be important bioengineers and bio-irrigators, playing a major
role in shaping the biochemical properties of mangrove sediment
and water (23).
Despite growing evidence that the functions of mangrove

forests are strongly dependent on viable and diverse invertebrate
assemblages (20, 23), only few studies at local scales have focused
on the diversity and taxonomic structure of such assemblages. The
functional richness and redundancy of the latter, critical to the
ecosystems’ capacity for essential services, are unknown, as are
their functional vulnerability. The functional diversity of a com-
munity with species distributed in a multidimensional functional
space within a given ecosystem can be quantified through indices
such as functional richness [FRi—the volume of multidimensional
space occupied by all species in a community within functional
space (34, 35)] and functional redundancy [FRe—how redundant
species and functional groups are at a given location (36)], which
are increasingly used for assessing ecosystem functioning. Recently,
these measures, used in parallel with functional vulnerability
[FVu—the potential decrease of functional diversity as a conse-
quence of species loss (36)], have also proven to be useful tools for
assessing impacts of disturbances on ecosystems (37, 38) and for
forecasting possible responses to anthropogenic perturbations (16).
In this study, we assessed the vulnerability of global mangrove

ecosystems to the loss of functions mediated by macrobenthic
species by computing taxonomic distinctness Δ+ (39), FRi, FRe,
and FVu indices based on crustacean and mollusk assemblages
recorded from 16 different mangrove forests across the world.
We assigned functional traits to the 209 crustacean and 155
mollusk species in our database according to their respective 1)
feeding habits, 2) behavioral traits potentially affecting ecosystem
characteristics, and 3) microhabitats. By using functional traits as
proxies for functions, this approach allowed us to establish global
patterns of macrobenthic taxonomic richness and ecosystem
functionality in mangroves and to assess the vulnerability of the
mangrove fauna as well as resilience of ecosystem functions me-
diated by them to current and future anthropogenic threats.

Results
Our sampling locations, situated in South America, Africa, the
Middle East, Southeast Asia, and Australia, differ widely in terms

of environmental and geographic characteristics (Table 1 and SI
Appendix, Table S1) and level of human disturbance (SI Appendix,
Table S2), therefore well representing the wide range of variation
found among the mangrove forests of the world. Both macro-
benthic taxonomic distinctness and FRi are negatively correlated
with air temperature only (F = 7.58, P < 0.05, R2 = 0.35 and F =
12.43, P < 0.01, R2 = 0.47, marginal tests for Δ+ and FRi, re-
spectively, SI Appendix, Table S3). As a direct consequence, FVu
is positively correlated with the same factor (F = 5.64, P < 0.03,
R2 = 0.29, marginal test, SI Appendix, Table S3). There is a sig-
nificant positive effect only of tree species richness on functional
redundancy (F = 19.71, P < 0.01, R2 = 0.58, SI Appendix, Table
S3). Interestingly, the area of the forests has no effect on any of
the calculated indices, with very small patches of mangroves, such
as the Mozambican and the Hong Kong ones (<2.5 km2), char-
acterized by high taxonomic distinctness and FRi, while some
large forests, such as the Cameroon location (250 km2), depict
much lower FRi (SI Appendix, Table S1 and Figs. 1 and 2).
As expected, taxonomic distinctness peaks at the western Pa-

cific Ocean locations (max Δ+ = 80.96) but unexpectedly also at
the southern American locations (Δ+ > 80), while values for
both the western African and western and central Indian Ocean
mangroves are intermediate (Δ+ > 65), with the exceptions of
Nouamghar (Mauritania, Δ+ < 55) and Galle (Sri Lanka, Δ+ <
60) (Table 1 and Fig. 1). FRi values show a distinct biogeo-
graphic pattern, with West African mangroves being particularly
low (Fig. 2 C and D), while Indonesia and Hong Kong, our
eastern Indian/western Pacific Ocean locations, display the highest
values (Figs. 1 and 2 L and N). The significance of the biogeo-
graphic pattern is further highlighted by the two western African
locations, both characterized by low FRi while demonstrating
pronounced ecological differences, with Nouamghar (Mauritania)
located in a dry region at the verge of the Sahara Desert, whereas
Douala (Cameroon) has very high rainfall (Table 1). Besides the
western African locations, the poorest faunas in terms of func-
tional entities (FE) diversity were Thuwal (Saudi Arabia) and
Galle (Sri Lanka), with only 16 and 17% of global FEs, respec-
tively. These low diversity faunas, however, fill nearly the same
amount of functional space as the much richer faunas recorded at
the eastern African and Australian locations (Fig. 2). This stability
in functional diversity is probably due to a high taxonomic simi-
larity among faunas, at least at supraspecific level, and shows that
poorer mangrove faunas share most of the key functions with
richer faunas (Fig. 2).
FRe values are low at both the eastern Atlantic and the western

Indian Ocean locations, where mangrove forests have less than two
species per FE, the minimum value needed to provide an “insur-
ance policy” for a particular trait (36). On the other hand, the
southern American and western Pacific Ocean locations are char-
acterized by FRe values above this critical threshold, with Segara
Anakan in Indonesia having the highest redundancy (Fig. 1).
As expected, the two low-diverse arid locations of Nouamghar

(Mauritania) and Thuwal (Saudi Arabia) are the most vulnerable
(Fig. 1), while Moreton Bay (Australia) has the lowest value of FVu
of the dataset, even though it is not the most diverse in terms of
species (Fig. 1). In general, FVu values are high at the eastern and
western Indian and western Pacific Ocean locations, with the no-
table exceptions of the two southernmost ones (Mngazana, South
Africa, and Saco da Inhaca, Mozambique) and the anthropogeni-
cally impacted location of Galle (Sri Lanka) (Fig. 3D).
Taxonomic distinctness fits best in a logarithmic relationship

with the total number of species recorded (Fig. 3A). It shows a
rapid initial increase with total species numbers, but, when the
curve reaches its asymptotic part, the values become weakly re-
lated to the total number of species present (Fig. 3A). Notably,
Segara Anakan (Indonesia), characterized by 100 macroinvertebrate
species, shows a slightly lower taxonomic distinctness in comparison
to locations where <60 species were recorded, such as Bahía Málaga
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(Colombian Pacific coast) and Península Ajuruteua (Brazilian north
coast). Also, FRi shows an asymptotic relationship with the number
of macrofaunal species, demonstrating that in mangrove forests,
there is generally a limited number of FEs, irrespective of total
faunal richness (Fig. 3C). In contrast, a strong relationship between
the number of species and FRe is evident (Fig. 3B), while there is
only a weak relationship between FRe and FRi (Fig. 3E).

Discussion
To our knowledge, our dataset is the largest and most compre-
hensive available on resident mangrove macrofauna to date, but
it is still far from being all embracing. Insects are a large and
definitely underestimated (23) component of mangroves, and
they are not present in our dataset together with better-described
and important populations of benthic fishes, such as mudskip-
pers. Cryptic species such as wood borers are likely underrep-
resented in our dataset. Moreover, presence/absence data could
mask or underestimate important trends in species dominance and
differences in biomasses among locations. Notwithstanding these
limitations, our collective data clearly show important patterns in
the distribution of invertebrate fauna and mangrove functionality
with significant implications for future biodiversity studies as well
as conservation and management strategies.
Invertebrate taxonomic diversity peaks at the South American

and Southeast Asian locations. We recorded relatively high values
in the western Indian Ocean, besides the notable exception of
Galle, Sri Lanka. The lowest value was recorded from Mauritania
in the eastern Atlantic Ocean. Our analyses showed that man-
grove invertebrate diversity is only marginally affected by air
temperature, and it is neither influenced by tidal amplitude nor by
precipitation and latitude, contrary to the drivers of mangrove
plant diversity (40). Besides the Sri Lankan location, where hy-
drology was significantly modified, there was also little direct
correspondence with the level of human intervention (SI Appen-
dix, Table S2). Instead, these trends mirror the global pattern of
mangrove tree diversity and support the “vicariance hypothesis”
proposed for the mangrove biodiversity anomaly (1, 33). This
hypothesis postulates that mangrove forests and their associated
fauna evolved around the Tethys Sea, from the Late Cretaceous
through the Early Tertiary, and that their present distribution is
the result of differential extinctions and local vicariance events.
Taxonomic distinctness was correlated to total species num-

bers, with similar Δ+ values for locations and recorded species
numbers ranging from 48 to 100. This shows that this index,

based on phylogenetic relationships among species, is a powerful
tool to infer the taxonomic composition of mangrove macrofaunal
assemblages. The asymptotic relationship evidences that, irre-
spective of the total number of species of crustaceans and mollusks
found in a mangrove forest, most belong to a small number of
highly specialized families, which are clearly the only taxa capable
of adapting to these harsh environments. Throughout the extant
mangrove range, the brachyuran families Sesarmidae, Ocypodidae,
and Macrophthalmidae as well as gastropods belonging to Littor-
inidae, Potamididae, and Ellobiidae are consistently the most
widespread, abundant, and dominant taxa. Although present in
other habitats, these taxa show the highest degrees of adaptation,
such as arboreality and leaf litter feeding behavior (23).
The FRi of invertebrate assemblages proved to be a powerful

tool to identify both the biogeographic trends of functionality
and impact of anthropogenic changes to local hydrology. Similar
to taxonomic distinctness, there was only a significant negative
relationship between this index and temperature, showing that,
within most of their geographic range, mangrove forests host
functional invertebrate assemblages under a broad range of en-
vironmental conditions. Indeed, significant differences in func-
tional richness mirroring the global biogeographic patterns of
mangrove tree diversity were detected, with West African man-
groves being particularly poor, while Indonesia and Hong Kong,
in the eastern Indian and western Pacific Ocean, displaying the
highest values. Two notable cases of low functional richness were
represented by Nouamghar in Mauritania and Galle in Sri Lanka.
In the former case, both biogeographic and harsh environmental
factors result in low tree diversity, leading to a limited number of
taxa and functional traits represented in the faunal community.
This northernmost distribution of mangroves at the verge of the
Sahara Desert only hosts 40% and 50% of the feeding and bio-
engineering traits, respectively, considered in the present study.
However, the low functional richness of Galle cannot be explained
by biogeography or environmental harshness. Due to anthropo-
genic changes to the hydrology (SI Appendix, Table S2), much of
the forest floor at this location is constantly submerged (41). The
altered tidal regime excludes most of the microphytobenthos
feeders common in the Indo-Pacific mangroves, such as Macro-
phthalmidae and sand bubbler crabs (Dotillidae), and also alters
the distribution of fiddler crabs (Ocypodidae), which feed on more
frequently immersed substrates. The absence of burrowing and
feeding activities performed by the above families of crabs reduces
bioturbation, likely resulting in significant shifts in biogeochemistry,

Table 1. Environmental, taxonomic, and functional characterization of the sampling locations

Location Air T (°C) Rainfall (mm) Mangrove Tree Species S FRe FRi FVu Δ+

Bahía Málaga (CO) 25 7,399 5 55 2.55 0.62 0.41 82.74
Península Ajuruteua (BR) 27.7 2,500 4 48 2.40 0.43 0.55 81.77
Nouamghar (MR) 25.8 95 1 7 1.40 0.02 0.8 54.29
Douala (CM) 26.5 4,000 7 15 1.36 0.19 0.73 72.57
Mngazana (ZA) 22.8 1,000 3 21 1.40 0.45 0.67 70.57
Saco da Inhaca (KE) 22.8 1,100 4 30 1.58 0.55 0.63 70.80
Gazi 26 1,408 7 47 1.68 0.58 0.5 73.12
Mida Creek (KE) 26 1,408 7 48 1.71 0.58 0.46 73.16
Thuwal (SA) 26 56 2 12 1.20 0.32 0.8 73.64
Port Launay (SC) 27 1,600 5 20 1.54 0.16 0.62 68.00
Galle (LK) 26.5 2,380 5 17 1.55 0.18 0.73 59.41
Segara Anakan (ID) 27 3,340 21 100 3.54 0.65 0.5 79.58
Mai Po (HK) 23.3 1,600 7 50 2.04 0.72 0.5 80.73
Ting Kok (HK) 23.3 1,600 7 50 2.32 0.63 0.42 79.73
Tung Chung (HK) 23.3 1,600 7 44 2.50 0.74 0.5 80.96
Moreton Bay (AU) 22 1,600 8 26 2.00 0.54 0.31 73.66

S, number of macrobenthic crustacean/gastropod species; T, temperature; Δ+, average taxonomic distinctness.
Air temperature and rainfall values are annual means.

Cannicci et al. PNAS | 3 of 8
A functional analysis reveals extremely low redundancy in global mangrove invertebrate
fauna

https://doi.org/10.1073/pnas.2016913118

EC
O
LO

G
Y

D
ow

nl
oa

de
d 

at
 K

en
ya

: P
N

A
S

 S
po

ns
or

ed
 o

n 
A

ug
us

t 2
, 2

02
1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016913118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016913118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016913118/-/DCSupplemental
https://doi.org/10.1073/pnas.2016913118


for example, nutrient fluxes, and redistribution in the surface sed-
iment (27) and bacterial communities (32), with strong implications
for ecosystem dynamics (41).
FRe reflects the average number of species with the same

combination of functional traits found in an assemblage. A re-
liable proxy to ensure redundancy is an overall minimum of
FRe = 2 (36). This index was below that threshold in >60% of
the studied locations, with the notable exceptions being locations
in South America and the eastern Indian and western Pacific
Ocean. The biogeographic patterns of invertebrate functional
redundancy mirrored the global anomaly of mangrove tree spe-
cies richness. This relationship may be explained by the fact that
an increased mangrove tree diversity provides a wider array of
microniches, resulting in a redundancy of species performing
similar roles in adjacent microhabitats within the forests. FRe is
also a powerful tool to assess ecosystem degradation and can

help identify the faunal species most vulnerable to local extinc-
tion (37). These species usually possess unique trait combina-
tions that, if lost, could result in the disappearance of significant
ecosystem roles (42). Our analyses show that within mangrove
forests, on average, 57% of the total functional trait combina-
tions have little “insurance” and are performed by a single spe-
cies, confirming that even a small loss of diversity could have
significant negative consequences for the ecosystem (SI Appen-
dix, Fig. S1). An overall comparison between our results and the
ones obtained using the same indices for other ecosystems re-
veals that mangrove forests are ecosystems with one of the lowest
faunal FRe recorded to date (Table 2).
Lastly, FVu clearly demonstrates the ecological fragility of

mangroves thriving in extreme environments, such as the arid
Sahara and Arabic coasts or at the southernmost limits of man-
grove distribution in Africa (SI Appendix, Fig. S1). Extreme high
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Fig. 1. Representation of the 16 sampling locations across the globe with their macrofaunal descriptors (data for crustaceans and mollusks pooled) and
range of mangrove tree species richness. The tree species richness at each sampling study location is indicated in Table 1. The two rows of doughnut charts
show the different functional traits and proportion of the crustacean and mollusk species with such traits per location. Embedded doughnut charts are shown
for countries with multiple sampling locations. (Bottom) The four calculated indices expressed as percentage for standardization, with FRe on the left, FRi and
FVu in the middle, and taxonomic distinctness (Δ+) on the right. The dashed lines above FRe represent the minimum value of species necessary (two species) to
ensure redundancy of functionality.
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levels of functional vulnerability, suggesting a potentially rapid
decrease of functional diversity, were also found in Galle (Sri
Lanka), where an irreversible change in hydrology is known to have
caused a cryptic ecological degradation of the forest (13).
The combination of the complementary information provided

by the indices of taxonomic distinctness, FRi, FRe, and FVu is
key to the understanding of the ecological state of a mangrove

forest, to evaluate its resilience to environmental change, and to
design ecologically sound conservation and restoration plans.
Good examples are the East African locations where relatively
high values of both taxonomic distinctness and FRi seem to
suggest at first glance that these forests are in a good state.
Compared to other geographic areas, these systems have suf-
fered low rates of destruction (2, 5) and still host a functionally

Fig. 2. Principal component analysis graphs representing the FRi (colored area) at the different study locations in relation to the overall functional space
(white area) occupied by the total amount of species identified in this study. Species that are present in a specific location are highlighted with colored dots,
while the remainder of the species present in the dataset of the entire study are represented with crosses. The locations are in the same order as in Fig. 1: (A)
Bahía Málaga (Colombia); (B) Península Ajuruteua (Brazil); (C) Nouamghar (Mauritania); (D) Douala (Cameroon); (E) Mngazana (South Africa); (F) Saco da
Inhaca (Mozambique); (G) Gazi (Kenya 1); (H) Mida Creek (Kenya 2); (I) Thuwal (Saudi Arabia); (J) Port Lunay (Seychelles); (K) Galle (Sri Lanka); (L) Segara
Anakan (Indonesia); (M) Mai Po (Hong Kong 1); (N) Ting Kok (Hong Kong 2); (O) Tung Chung (Hong Kong 3); and (P) western Moreton Bay (Australia). The
different colors of the space representing the FRi relates to the region of the study locations (see Fig. 1 for color key).

Cannicci et al. PNAS | 5 of 8
A functional analysis reveals extremely low redundancy in global mangrove invertebrate
fauna

https://doi.org/10.1073/pnas.2016913118

EC
O
LO

G
Y

D
ow

nl
oa

de
d 

at
 K

en
ya

: P
N

A
S

 S
po

ns
or

ed
 o

n 
A

ug
us

t 2
, 2

02
1 

https://doi.org/10.1073/pnas.2016913118


rich invertebrate fauna. However, given their critically low FRe
values, their resilience, that is, capacity for resisting future
changes, is likely low (SI Appendix, Fig. S1).
Another striking finding of our integrated approach is that

none of the measured indices was related to the size of the studied
forest. We have shown how even small mangrove patches, such as
those in Hong Kong and Mozambique, harbor highly diverse and
functionally rich invertebrate assemblages. Small forests can
therefore still be functional and represent true biodiversity reser-
voirs, harboring source populations of highly diverse invertebrate

assemblages, which could prove critical to the recruitment and
restoration of the fauna of connected proximal or distant habitat
patches. While the conservation of extensive, pristine, and diverse
mangrove forests should be prioritized (19), our results show that
the preservation of small yet well-connected patches of mangroves
is also important (43).
Conventional attention on threats to mangrove ecosystems fo-

cuses heavily on their areal extent (3, 4, 6). Our results, however,
suggest that their functional integrity may be even more vulnera-
ble toward environmental change since many critical functions and

A B

C D

E

Fig. 3. Relationships among number of macrobenthic species recorded (see Fig. 1 for key to locations) and the computed taxonomic and functional indices.
Best fitted trend lines (dotted blue line) and the associated R2 value are shown for (A) taxonomic distinctness (Δ+) and species number with a logarithmic
trend line; (B) FRe and species number with a linear trendline; (C) FRi and species number with a logarithmic trend line; (D) FVu and species richness with
logarithmic trend line; and (E) FRe and FRi with an exponential trend line.

Table 2. Low functional redundancy values of mangrove macrobenthic assemblages

FRe following (36) FRe ¼ S
FE

Mangrove invertebrate fauna
(this study)

Corals
(55)

Benthic marine biota (56)
Reef fishes

(17)
Reef fishes

(36)
Reef fishes

(57)
Lichens
(58)

Freshwater fishes
(59)

Cambrian Silurian Modern

Min 1.2 1.7 NA NA 2.5 5 2.5 2.3 4.5 1.6
Max 3.5 2.8 NA NA 7.9 6 7.9 3.3 6.3 2.6
Mean 1.9 2.2 2.1 2.5 5 5.4 5 2.7 5.4 2.2
SD 0.6 0.5 2.1 0.5 2.1 0.2 0.2

The table shows comparisons among the values of FRe computed in the present study and the ones found for other ecosystems, calculated using the same
method. NA = not available.
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services that mangrove forests provide are supported by the syn-
ergistic interactions of their floral and faunal components (8).
Here, we advocate that for the evaluation of ecosystem status,
functionality, and resilience of mangrove forests, it is crucial to
study the composition and traits of the resident faunal assem-
blages. In this study, we have based our assessment of ecosystem
vulnerability on FRe. As mangroves are spatially diverse and
temporally dynamic, long-term monitoring programs will be nec-
essary to establish the redundancy–vulnerability relationship in
these systems. The intrinsically low taxonomic diversity and FRe
of their resident fauna suggest that mangrove forests are some of
the most vulnerable ecosystems on the planet, except for the
speciose systems in Southeast Asia. Forests in this region, how-
ever, are among the most threatened in the world due to extensive
conversion into aquaculture ponds or oil palm plantations (3). A
holistic approach, based on ecological characteristics and com-
bining information on both floral and faunal functionality, must
underpin effective future management, conservation, and resto-
ration strategies for these threatened ecosystems (18) to ensure
the sustained provision of their critically important services.

Materials and Methods
Dataset. To ensure a reliable presence/absence information of mangrove
crustaceans and mollusks for our analyses, only data collected at the own
research locations of the coauthors, all with taxonomic expertise inmangrove
fauna in different parts of the world, were used. Numerous surveys were per-
formed within the period 1985 to 2020 involving various standard techniques,
ranging from manual collection, visual observation, and trapping due to the
complexity of the mangrove habitat and the different behaviors of the macro-
benthic species (SI Appendix, Table S5). Some of the individual datasets (or parts
thereof) are published, such as the Colombian (44), Brazilian (45, 46), Indonesian
(25, 47), Gazi [Kenya (24)], Saco da Inhaca [Mozambique (24)], and Douala (48)
studies. The sites varied in degree of human intervention from locally absent
(Nouamghar, Mauritania) to high (e.g., Indonesia) (SI Appendix, Table S5).

Indices and Metrics. As a measure of faunal diversity, we used the average
taxonomic distinctness index (Δ+), which summarizes the overall hierarchical
structure of an assemblage (49). This index is also robust for big sets of data
collected using several techniques, as in our case, and different sampling
efforts (39). For the functional analyses, three categorical traits only were
used to assess the different functional indices to avoid both redundancy in
the traits chosen and an overrepresentation of their role in the ecosystem (50)
(SI Appendix, Table S4). We could then identify 64 FEs based on unique
combinations of the abovementioned categorical functional traits to classify
the 364 species of resident mangrove invertebrates identified at our locations.
We also built a functional space where FEs were placed according to their trait
combinations (Fig. 2) (36). The three traits chosen were the following: 1)
feeding habits, 2) behavioral traits potentially affecting ecosystem character-
istics, and 3) microhabitat position (SI Appendix, Table S4). The position of the
animals sampled inside the mangrove forests was coded using four categories:
supratidal, intertidal forest, intertidal mudflat, and subtidal.

Dietary categories were coded using a fuzzy logic approach in which
different dietswere assigned to the present species, allowing a species to feed
on more than one item. A total of 10 dietary categories were considered,
namely the following: detritivore, leaf litter and propagule feeder, macro-
algal feeder, fresh mangrove leaf feeder, microalgae and bacteria feeder,
omnivore, predator, scavenger, suspension feeder, and lignivore (Fig. 1 and SI
Appendix, Table S4). To further assess the ecological impact of the various
species, eight behavioral categories were identified, also using a fuzzy logic
approach: burrowing, surface digging, encrusting, free living, shredding,
wood boring, leaf storing, and surface bioturbating (Fig.1 and SI Appendix,
Table S4). All encountered crustacean and mollusk species were then

assigned to the different categories according to expert knowledge of the
authors and the available literature. A detailed description of the above
traits and categories is provided in SI Appendix and in SI Appendix, Table S4.

The separation among functional traits was computed using Gower dis-
tance, allocating the same weight to all three traits. Principal coordinate
analysis was conducted using this matrix, and the coordinates were then used
to construct a multidimensional space with four axes to allow for the cal-
culation of FRi (Fig. 2). FRi was assessed by measuring the proportional
convex hull volume of the multidimensional space occupied by all species in
a community within the functional space (37). A higher FRi indicates that the
community has a large representation of trait combinations present, while a
lower one denotes that only a few traits are present in the community. FE
represents a unique combination of traits present at a given location (36),
with its number varying from five to 28 across the different study locations.
FRe and FVu were calculated following the method suggested by Mouillot
and coworkers (37),

FRe = ∑FE
i=1ni

FE
= S
FE

FVu = ∑FE
i=1min(ni = 1)

FE
,

where S is the total number of species at a location, FE is the total number of
functional entities, and ni is the number of species in functional entity i.

Linear models were built to determine which environmental and geo-
morphic variables best explained the variability of the four computed indices
across locations. For each index, the best possible combination of predictor
variables was selected through a stepwise procedure and using a modifica-
tion of the Akaike Information Criterion developed to cope with datasets
with a low number of samples with respect to the number of predictor
variables (the AICc criterion). All the applied stepwise procedures began with
a null model to which a predictor variable was added to improve the AICc
criterion. (SI Appendix, Table S3). Univariate marginal tests were also per-
formed for each predictor variable. All indices were computed and analyses
performed in PRIMER 7 software and R (51). The packages ade4 (52) and
vegan (53) in R, in addition to R scripts provided by refs. 36 and 37, were
also used.

Data Availability. Species occurrence data together with location metadata
have been deposited in the University of Hong Kong (HKU) DataHub and
DataCite (10.25442/hku.12830951.v1) (54).
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Description and categorization of functional traits for mangrove invertebrate macrofauna 
Mangrove ecosystems support specialized resident invertebrate assemblages, mainly dominated 
by crustaceans (particularly brachyuran crabs) and mollusks (mostly gastropods) (1, 2). It is 
becoming evident that healthy and resilient mangrove forests support diverse invertebrate 
assemblages (3–5). The ecological role of each species depends on its biological and behavioral 
traits, which has never been identified and categorized in an integrated approach for resident 
mangrove fauna. For instance, the burrowing and feeding activity of some crab species have an 
ecoengineering effect on mangrove forests (6–8), while the litter storing and consumption 
behavior of other species affects carbon fluxes and nutrient retention (9). Many gastropods also 
mediate nutrient fluxes by feeding on mangrove litter as well as the microphytobenthos (2). For 
the above reasons, we identified and categorized three traits related to the major ecological roles 
exerted by the invertebrate fauna on mangrove ecosystems. 
 
Position along the intertidal belt. Mangrove resident fauna is known to be spatially segregated 
along the sea-land axis, in a distribution typical of intertidal habitats (10–12). The intertidal 
position occupied by a species determines its ecological impact on prey populations (including 
food plant species), making tidal position a crucial trait to characterize the species’ niche (Table 
S2). 
 
Diet. Diet determines the position of a species within the mangrove food web and its trophic role 
(3, 13, 14). In particular, diet is strongly correlated with the feeding and foraging behavior, as well 
as the morphology of many mangrove invertebrates, which typically rely on two primary sources 
of carbon and nitrogen. Most of the sesarmid crabs and one ocypodid, Ucides cordatus, as well 
as a few gastropods, such as Terebralia palustris, rely on mangrove litter and propagules (2, 5, 
15, 16), while other ocypodids, dotillids and the majority of gastropods feed on the 
microphytobenthos present on the sediment surface (Table S4) (2, 17–19). 
 
Behavior. Behavioral patterns of resident invertebrates have paramount importance for the 
functioning of mangrove ecosystems, ultimately affecting their capacity for service provision (2, 3, 
20, 21). Burrowing activities, for instance, modulate nutrient and gas fluxes in the sediment (7, 
22–26), shredding of fresh leaves and litter accelerate their decomposition (27, 28), while 
suspension feeders greatly improve water quality (Table S4). In particular, we used the following 
categories: burrowing, - species that dig and maintain their own burrows; surface digging - 
species that dig superficial and temporary refuges; encrusting -  species encrusting mangrove 
trunks and roots; free living -  mobile species that do not actively dig their own refuges; 
fragmenting -  species that shred and fragment leaves and propagules while consuming them; 
woodboring -  species that excavate their refuges inside mangrove trunks and roots; leaf storing,-  
species that actively store mangrove leaves and propagules in their burrows; surface bioturbating 
- species that actively scoop the surface sediment to feed. 
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Figures and Tables 
Figure S1. Modelled scenarios of species extinction at the sampled sites in relation to the 
observed number of Functional Entities. To estimate the speed of decline in functionality for each 
site, a random species was removed from the community alongside its corresponding functional 
entities. The process was repeated for 1000 iterations until there were no more functional entities 
and all species in the population were extinct. The data points are plotted with confidence 
intervals which are represented with horizontal dashes. The sites are in the same order as in 
Figure 1: A) Báhia Málaga (Colombia); B) Península Ajuruteua (Brazil); C) Mamgar (Mauritania); 
D) Douala (Cameroon); E) Mngazana (South Africa); F) Saco da Inhaca (Mozambique); G) Gazi 
(Kenya 1); H) Mida Creek (Kenya 2); I) Thuwal (Saudi Arabia); J) Port Launay (Seychelles); K) 
Port Galle (Sri Lanka); L) Segara Anakan (Indonesia); M) Mai Po (Hong Kong 1); N) Ting Kok 
(Hong Kong 2); O) Tung Chung (Hong Kong 3); and P) Moreton Bay (Australia). The different 
colors of the models relate to the region of the study locations (see Fig 1 for color key). 
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Table S1. Environmental characteristics of the sampling locations. Abbreviations as follows: Long / Lat = Longitude / 
Latitude; AGB = Above-ground biomass.  
 

Country Location Long 
(°) 

Lat 
(°) 

Area 
(km2) 

Tidal 
Regime 

Tree AGB 
(Mg.ha-1) 

Colombia Bahía Málaga -77.31 3.97 44 Macro 253.2 
Brazil Península Ajuruteua -46.68 -0.89 160 Macro 158.7 

Mauritania Nouamghar -16.07 17.40 0.1 Meso 100.0 
Cameroon Douala 9.76 4.14 250 Macro 250.0 

South Africa Mngazana 29.39 31.69 12 Meso 80.0 
Mozambique Saco da Inhaca 32.54 26.20 2.1 Meso 100.0 

Kenya Gazi 39.31 -4.25 10 Meso 180.0 
Kenya Mida Creek 39.98 -3.35 16.6 Meso 180.0 

Saudi Arabia Thuwal 39.50 22.16 5 Meso 133.6 
Seychelles Port Launay 55.47 -4.70 1.3 Meso 136.4 
Sri-Lanka Galle 80.25 6.03 0.2 Micro 230.9 
Indonesia Segara Anakan 108.89 -7.71 92 Meso 101.7 

Hong Kong Mai Po 114.05 22.50 1 Meso 140.0 
Hong Kong Ting Kok 114.12 22.28 0.1 Meso 140.0 
Hong Kong Tung Chung 113.93 22.28 0.02 Meso 140.0 

Australia Moreton Bay 153.25 -27.25 150 Meso 135.2 
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Table S2. Anthropogenic interventions at the study sites. 1: Present, 0: Absent, n/a: not applicable. Resource extraction: S - for own use, IS – for income 
generation realized by individuals and/or for small local companies; IL – for income generation realized by large companies (locally based or beyond). Superscripts 
refer to complementary information underneath the table. Entries relate to the period sampled. 

 

Country Location Protected Area 
Status 

Resource Extraction Road 
within       
1 km 

Town/City       
≥ 5000 

inhabitants 
within 20 

km 

Agriculture 
/ 

Pastoralism 
within 5 km 

Commercial 
Aquaculture 
within 5 km 

 Dams or 
Dykes 
within 

catchment 

Industrial 
Structures 

within 5 
km                     Brachyura Mollusca Timber  Firewood 

Colombia Bahia 
Málaga1 

National Natural Park 
(IUCN II) S, IS S, IS S Unknown 0 0 1 0 0 0 

Brazil Peninsula 
Ajuruteua2 

Extractive Reserve 
(IUCN IV) S, IS S, IS S, IS S, IS 1 1 1 0 0 0 

Mauritania Nouamghar3 Banc d'Arguin National 
Park IUCN II 0 0 0 0 0 0 0 0 0 0 

Cameroon Douala4 0 S, IS, IL S, IS, IL S, IS, 
IL S, IS, IL 1 1 0 0 0 1 

South Africa Mngazana5 0 S, IS 0 S, IS S, IS 1 1 1 0 n/a 0 

Mozambique Saco da 
Inhaca6 Reserva da Inhaca S, IS S S 0 0 0 1 0 n/a 0 

Kenya Gazi7.1 National Protection S S S S, IS 1 1 1 0 0 0 

Kenya Mida Creek7.2 
National Protection 

and Watamu National 
Marine Reserve 

S, IS 0 S, IS S 1 0 1 0 n/a 0 

Saudi Arabia Thuwal8 Local Natural 
Protected Area  0 0 0 0 1 1 0 0 n/a 0 

Seychelles Port Launay9 Ramsar Site S S S Unknown 1 1 0 0 n/a 0 

Sri Lanka Galle10 0 S, IS S, IS S S 1 1 1 0 1 1 

Indonesia Segara 
Anakan11 0 S, IS S S, IS S 1 1 1 1 1 1 

Hong Kong Mai Po12.1 WWF Nature Reserve 0 0 0 0 1 1 0 1 0 1 

Hong Kong Ting Kok12.2 0 S S 0 0 1 1 0 0 1 1 

Hong Kong Tung 
Chung12.3 0 S S 0 0 1 1 0 0 0 1 

Australia Moreton 
Bay13 Marine Park  S S 0 0 1 1 0 0 0 1 

1 Overall low degree of human intervention; estuarine mangrove on the pacific coast reachable by boat or plane only; next city (> 5000 inhabitants) and industry 
37 km by boat. Two villages nearby totalling 3000 inhabitants and several small villages < 500 people. Resource exploitation only permitted for locals. 
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2   Low to intermediate degree of human intervention; peninsular Amazonian estuarine mangrove part of the world's second largest continuous mangrove belt. 
Four adjacent villages (4700 inhabitants in total) and nearby city with 65,000 inhabitants (Bragança); Protected Extractive Reserve status since 2005, co-
managed with significant legal fishery of the mangrove crab Ucides cordatus; some illegal timber extraction; degraded area in the mangrove from road 
construction in the 70s from road construction. Over 40 guesthouses/restaurants at nearby beach, increased fishing activities in holiday periods.  
3   Lack of local human interventions; northernmost mangrove in Africa fringing the shores of Sahara Desert. Very dry all year round, no rivers. Very small fishing 
village nearby. 
4  High degree of human intervention; estuarine mangrove bordered by Duala City with > 2 millions of inhabitants and large commercial harbour (key trading hub 
in W-Africa); large oil-refinery and chemical factories. 
5    Intermediate degree of human intervention; southernmost mangrove in Africa and third largest (estuarine) mangrove in South Africa; no protection status 
despite advocacy for its conservation; 18 to 50% of mangrove area affected by timber extraction; browsing by cattle and human trampling of seedlings; some 
localised sand mining for road construction. 
6  Overall low degree of human intervention; fringing mangrove located on an island reserve, low human population density. The only human impact on the 
island are two tourist resorts. Very small artisanal fishery to supply the tourist resorts. 
7.1  Intermediate degree of human intervention; fringing mangrove in southern Kenya, with some smaller rivers. All Kenyan mangroves are protected by national 
law, but no enforcement. Small villages are bordering and impacting the forest with sewage; very small-scale crab and mollusc fishery. 
7.2  Intermediate degree of human intervention; fringing mangrove in northern Kenya, with some smaller rivers.  All Kenyan mangroves are protected by national 
law, but no enforcement. Small villages are bordering and impacting the forest with sewage; very small-scale crab and mollusc fishery. 
8   Intermediate degree of human intervention; fringing mangrove bordered by Thuwal city (7600 inhabitants), the Campus of King Abdullah University of Science 
and Technology (approx. 5000 people) and desert. Area under increasing development. 
9  Overall low degree of human intervention and one of the best-remaining (fringing) mangrove forest on Mahe Island. The entire bay is a no-fishing area, 
access for tourism purposes in permitted, touristic estates present around the area.  
10 High degree of human intervention, estuarine mangrove forest exposed to a variety of anthropogenic impacts ranging from sewage, concrete production 
industry to damming and resource extraction. Data were collected prior to the designation of the protected-area status. 
11  High level of human intervention; Mangrove-fringed lagoon, adjacent rural settlements, rice fields, aquaculture, industrial areas (including largest oil refinery 
of Indonesia); Cilacap city at the coast with 201,000 inhabitants. 
12.1   High degree of human intervention; located in the Pearl River Estuary inhabited by > 30 million people. Largest mangrove site in Hong Kong territory, 
expanding naturally. Located in front of the large Shenzen harbor. Diverse industrial structures and industrial hotspot of China. 
12.2  Intermediate degree of human intervention; fringing mangrove located in a relatively rural area of the Hong Kong territory, but close to the Industrial Estate of 
Tai Po. It is located within the Tolo Harbour complex, which is strongly polluted in terms of nitrogen, regular events of hypoxia.. 
12.3  High degree of human intervention; estuarine mangrove located on Lantau Island, right in front of Hong Kong International Airport and bordered by a town 
with 125,000 inhabitants. 
13   Low to intermediate degree of human intervention of fringing mangroves located close to a city of >1.5 million people. Part of a large marine park divided into 
various levels of use, with strictly enforced management of the area. Some significant infrastructure, including an international airport, a sewage treatment 
facility and an oil refinery are present. Industries are supposed to strictly observe environmental rules on discharge, emissions etc. 
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Table S3. Linear models built to test which environmental and geomorphic variables explained at best the variability of taxonomic distinctness, functional richness, 
functional redundancy and functional vulnerability. For each index, the variables selected by the step-wise procedure are shown together with the treatment sum of 
squares (Trat. SS), the values of the F-statistics and P, the proportion of variability explained by the single variable (prop.) and by the various variables added to 
the model (Cumul.), the residual degrees of freedom (Res. Df) and the Akaike information criterion with a correction for small samples (AICc). For each index, the 
best overall linear model capable to explain its variability is also shown together with the predictor variables involved, the residual sum of squares (Res. SS), R2 
and AICc. 
 

Taxonomic 
distinctness 

Variables in the model Treat. SS F P Prop. Cumul. Res. df AICc 
+Air T 334.450 7.579 0.027 0.351 0.351 14 63.380 
+ Tide 177.300 5.233 0.046 0.186 0.537 13 61.044 
+ Tree AGB 175.600 7.956 0.016 0.184 0.722 12 56.543 
+ Latitude 72.089 4.114 0.071 0.076 0.798 11 55.823 
Overall Best result for the linear models Res. SS R2 AICc      

Latitude, Air T, Tree AGB, Tide 192.78 0.798 55.823         

Functional 
richness 

Variables in the model Treat. SS F P Prop. Cumul. Res. df AICc 
+ Air T 0.349 12.403 0.002 0.470 0.470 14 -54.354 
+ Mangrove tree species 0.086 3.650 0.055 0.116 0.586 13 -55.236 
Overall Best result for the linear models Res. SS R2 AICc      

Air T, Mangrove tree species 0.307 0.586 -55.236         

Functional 
redundancy 

Variables in the model Treat. SS F P Prop. Cumul. Res. df AICc 
+ Mangrove tree species 3.298 19.708 0.003 0.585 0.585 14 -25.819 
+ rainfall 0.417 2.817 0.120 0.074 0.659 13 -25.881 
+ Tree AGB 0.451 3.674 0.083 0.080 0.739 12 -26.518 
+ Latitude 0.498 5.615 0.036 0.088 0.827 11 -28.753 
Overall Best result for the linear models Res. SS R2 AICc     

Mangrove tree species, rainfall, Tree AGB, Latitude 0.976 0.827 -28.753         
Functional 
vulnerability 

Variables in the model 
+ Air T 

Treat. SS 
0.092 

F 
5.643 

P 
0.023 

Prop. 
0.287 

Cumul. 
0.287 

Res. df 
14 

AICc 
-63.043 

 Overall best result for the linear models Res. SS R2 AICc     
 Air T 0.229 0.287 -63.043     
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Table S4. Traits and categories used to identify the functional entities (FEs) utilized in the 
analyses. For each category, some example species are shown (full species list available from 
https://doi.org/10.25442/hku.12830951.v1), together with the relevant references. 
 
Trait Category Example species Reference 

Spatial 
position 

supratidal Cardisoma guanhumi, Orisarma 
intermedium 

(29, 30) 

intertidal forest Ucides cordatus, Parasesarma 
guttatum, Terebralia palustris 

(31–33) 

intertidal mudflat Metaplax elegans, Gelasimus spp., 
Pirenella spp. 

(30, 34, 35) 

subtidal Thalamita crenata, Scylla spp. (36, 37) 

Diet 

detritivore Chasmagnathus convexus, Merguia 
oligodon 

(38, 39) 

leaf litter and 
propagule feeder 

Ucides sp., Neosarmatium spp., 
Terebralia palustris 

(11, 31, 40–
42) 

macroalgal feeder Metopograpsus spp. (43–45) 
fresh mangrove leaf 

feeder 
Leptarma leptosoma, Aratus spp., (46–48) 

microalgae and 
bacteria feeder 

Leptuca spp., Gelasimus spp., 
Austruca spp., Cerithidea spp. 

(19, 35, 49) 

omnivore Selatium elongatum, Clibanarius 
spp., Alpheus colombiensis 

(17, 44, 50, 
51) 

predator Epixanthus dentatus, Scylla spp. (52, 53) 
scavenger Nassarius spp. (54) 

suspension feeder Petrolisthes armatus, Saccostrea 
cucullata, Isognomon ephippium 

(55, 56) 

lignivore Neoteredo reyni (57) 

Behavior 

burrowing Ucides cordatus, Neosarmatium spp., 
Austruca spp. 

(58–61) 

surface digging Geloina spp. (62) 
encrusting Saccostrea cucullata, Isognomon 

ephippium 
(55, 56) 

free living Metopograpsus spp., Aratus spp. (43, 63) 
fragmenting Parasesarma bidens, Parasesarma 

affine 
(64, 65) 

woodboring Neoteredo reyni, Barnea subtruncata (57) 
leaf storing Neosarmatium spp. (9, 11, 42, 66) 

surface bioturbating Leptuca spp., Gelasimus spp., 
Austruca spp. 

(19, 49, 60, 
67) 
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Table S5.  Details on sampling regime. Sampling methods: 1 – Macrobenthos collection on sediment (including among litter), roots, lower trunks 
and branches; 2 – Digging and/or sediment sieving; 3 – Binocular observations; 4 – Trapping (pitfall traps). 
 
 
Country/Region 
 

 
Location 

 
Year 

 
Period 

 
Sampling methods 

 
Example reference 
 

 
Colombia 
 

 
Bahia Málaga 

 
1985-88, continued to 
2018  

 
Day 

 
1, 2, 3 

 
(68) 

Brazil Peninsula Ajuruteua 1996-2003, continued to 
2014 

Day  1, 2, 3 (49, 69, 70) 

Mauritania Nouamghar 1998-2009 Day & night 1, 2, 3  
Cameroon Douala 2009 Day 1, 3 (71) 
South Africa Mngazana 1999-2018 Day & night 1, 3 (72,73) 
Mozambique Saco da Inhaca 2009 Day & night 1, 2, 3  (72, 74, 75) 
Kenya Gazi 1998-2009 Day & night 1, 2, 3 (74,75) 
Kenya Mida Creek 1998-2008 Day & night 1, 2, 3 (72, 76) 
Saudi Arabia Thuwal 2014-2019 Day & night 1, 2, 3 (76)  
Seychelles Port Lunay 2005 Day & night 1, 3  
Sri Lanka Galle 1997-2004 Day & night 1, 3 (11, 77) 
Indonesia Segara Anakan 2004-2006, 2014-2016 Day 1, 2, 3 (78, 79) 
Hong Kong Mai Po 1985-97, 2016-20 Day & night 1, 2, 3 (80, 83) 
Hong Kong Ting Kok 2016-20 Day & night 1, 2, 3  
Hong Kong Tung Chung 2016-20 Day & night 1, 2, 3  
Australia 
 

Moreton Bay 2000-2002, continued to 
2017 

Day & night 1, 2, 4  

 
 
 


