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A B S T R A C T

Retrieval of biophysical properties of mangrove vegetation (e.g. height and above ground biomass) has typically
relied upon traditional forest inventory data collection methods. Recently, the availability of Unmanned Aerial
Vehicles (UAV) with different types of sensors and capabilities has proliferated, opening the possibility to expand
the methods to retrieve biophysical properties of vegetation. Focusing on the Matang Mangrove Forest Reserve
(MMFR) in Perak Province, Malaysia, this study aimed to investigate the use of UAV imagery for retrieving
structural information on mangroves. We focused on a structurally complex 90-year-old protective forest zone
and a simpler 15-year-old productive forest zone that had been silviculturally managed for charcoal production.
The UAV data were acquired in June 2016. In the productive zone, the median tree stand heights retrieved from
the UAV and field data were, respectively, 13.7 m and 14m (no significant difference, p-value= .375). In the
protective zone, the median tree stand heights retrieved from the UAV and field data were, respectively, 25.8
and 16.5m (significant difference, p-value= .0001) taking into account only the upper canopy. The above
ground biomass (AGB) in the productive zone was estimated at 217Mg ha−1 using UAV data and 238Mg ha−1

using ground inventory data. In the protective zone, the AGB was estimated at 210Mg ha−1 using UAV data and
143Mg ha−1 using ground inventory data, taking into account only upper canopy trees in both estimations.
These observations suggested that UAV data were most useful for retrieving canopy height and biomass from
forests that were relatively homogeneous and with a single dominant layer. A set of guidelines for enabling the
use of UAV data for local management is presented, including suggestions as to how to use these data in
combination with field observations to support management activities. This approach would be applicable in
other regions where mangroves occur, particularly as these are environments that are often remote, inaccessible
or difficult to work in.

1. Introduction

Forest inventory is a well established approach to support forest
monitoring and management (Masek et al., 2015; McRoberts and
Tomppo, 2007). However, forest inventory fieldwork is laborious and
requires a fine balance between the work objectives and the intrinsic

restrictions such as sample size, observation frequency, budget avail-
ability and logistical constraints (FAO, 1994; McRoberts and Tomppo,
2007). Recently, there has been an increased usage of remote sensing
data involved in the planning, development and implementation of
forest inventories as these data can help to overcome some of pre-
viously mentioned constraints (FAO, 1994; Masek et al., 2015;
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McRoberts and Tomppo, 2007).
Mangrove forests are challenging ecosystems in which to perform

forest inventory. In addition to the restrictions mentioned above,
mangrove forests are typically located in remote and difficult to access
areas and surveys are often hindered by tides, mud and dense root
networks. Nevertheless, routine monitoring of mangrove forest struc-
ture, floristics and biomass is needed for managing resources and en-
suring effective conservation and sustainable utilisation. This is parti-
cularly important as these forests are one of the most carbon rich in
tropical and subtropical regions (Alongi, 2012; Donato et al., 2011; Ha
et al., 2017), are an essential component of coastal protection
(Dahdouh-Guebas et al., 2005; Othman, 1994; UNEP-WCMC, 2006),
maintain biodiversity, are a source of wood, provide livelihood for local
populations and procure cultural values (Walters et al., 2008).

Over the past decade, the use of Unmanned Aerial Vehicle (UAV)
technology in ecosystem studies has proliferated (Anderson and Gaston,
2013; Pajares, 2015). Common information retrieved from UAV ima-
gery includes plant species, canopy height, stem location, above ground
biomass (AGB) and canopy structure (Dandois and Ellis, 2013;
Jaskierniak et al., 2016; Messinger et al., 2016; Panagiotidis et al.,
2017; Zahawi et al., 2015; Zarco-Tejada et al., 2014; Zhang et al. 2016).
UAV technology has the potential to provide a greater amount of spatial
information on forest biophysical attributes as it allows more rapid
surveys of larger areas compared to more traditional ground-based
surveys (Dandois and Ellis, 2013; Messinger et al., 2016; Puliti et al.,
2015) and can complement traditional forest inventory techniques
(Zahawi et al., 2015; Zhang et al., 2016). Although some studies have
used UAVs to study coastal ecosystems (Jaud et al., 2016; Mancini
et al., 2013; Wang et al., 2015), the focus on mangrove forests is still
limited (Tian et al., 2017).

The research reported here is focused on the Matang Mangrove
Forest Reserve (MMFR) in Peninsular Malaysia, which has been man-
aged for more than 100 years, making it the longest managed mangrove
reserve in the world (Chong, 2006). The monitoring at MMFR has
traditionally been undertaken using ground-based forest inventories
(Amir, 2012; Goessens et al., 2014; Gong and Ong, 1995; Putz and
Chan, 1986). However, in recent years, different studies have explored
the use of remote sensing data (primarily space-borne) and techniques
to support the management of the MMFR (Aziz et al., 2015; Hamdan
et al., 2013; Hamdan et al., 2014; Ibharim et al., 2015). However, only
the studies of Hamdan et al. (2013) and Hamdan et al. (2014) have
focused on retrieving biophysical attributes, namely biomass, and none
so far have considered forest structure indicators such as tree height.
The first objective of this study is to evaluate the use of lightweight
UAV technology and Red Green Blue (RGB) images, in combination
with ground-based surveys, for retrieving tree height and AGB in the
MMFR. A second objective is to develop guidelines for the local man-
agement to incorporate the use of UAVs in the routine monitoring of
mangroves in the MMFR.

2. Materials and methods

2.1. Study area

The MMFR in Perak State, in peninsular Malaysia, has been man-
aged for pole and charcoal production since 1902 (Chong, 2006). The
reserve consists of 40,288 ha of riverine mangrove forest with 27
mangrove species (Fig. 1) (Ariffin and Mustafa, 2013; Chong, 2006).
The reserve has a tropical climate and the annual rainfall varies be-
tween 2000 and 2800mm. The monsoons influence the rainfall in the
area. Peninsular Malaysia experiences monsoons between November
and March (Northeast monsoon) and May and September (Southwest
monsoon) (Suhaila and Jemain, 2007). Average air temperature ranges
from 22 °C at night to 33 °C during the day (Ariffin and Mustafa, 2013).
Tides are semidiurnal and the spring tidal amplitude is 3.3m (Asthon
et al., 1999).

The MMFR is divided in four types of administrative zones: pro-
tective (17.4% of the total forest area in the Reserve), productive
(74.8%), restrictive productive (6.8%) and unproductive (1%) (Ariffin
and Mustafa, 2013). The timber extraction to produce poles and char-
coal occurs in the productive and restrictive productive zones. The
current silvicultural management consists of a 30 year rotation cycle
with two thinnings at 15 and 20 years (Ariffin and Mustafa, 2013). The
harvesting is focused on forests dominated primarily by Rhizophora
apiculata Blume and R. mucronata Lamk. Such harvesting results in
forest stands that are relatively homogeneous in terms of their species
composition, age and biomass. The protective zones are not under the
silvicultural management and are areas that support the mangrove
forests by providing ecosystem services, including coastal protection,
conservation of flora and fauna, and mangrove propagule production.
The unproductive zones are lakes and infrastructure, including villages,
charcoal kilns and offices (Ariffin and Mustafa, 2013).

2.2. Methods

We followed the workflow outlined in Fig. 2 to evaluate the po-
tential use of UAV to support routine monitoring of the MMFR man-
groves. We collected ground and UAV data, processed the data and
validated the algorithm for retrieving forest structure characteristics of
the mangrove forest.

2.2.1. Data collection
The forest inventory data were collected from two stands in the

protective zone and three stands in the productive zone (Fig. 1). The
protective zone is not under exploitation and is approximately 90 years
old (Goessens et al., 2014; Putz and Chan, 1986). The productive zone
is under exploitation and we surveyed 15-year-old forest stands. We
chose these two zones because of the differences in forest biophysical
characteristics, with one being structurally complex (the protective
zone) and the other being more homogeneous (the productive zone).
We were not seeking to establish differences in structural measures and
AGB between the two stands as a function of forest management, but
only to evaluate the performance of the UAV data in two different
areas.

Forest inventory data were collected in June, July and December
2016, and April 2017 (Table 1). In each stand, plots were located along
a transect perpendicular to the shore running inland from the water
margin at 20m intervals. In each plot, we recorded the species, girth,
height and crown diameters for each adult tree (i.e. trees with more
than 2.5 cm diameter). The species identification of mangroves refer-
enced Tomlinson (1986). Girth was measured using a measuring tape at
130 cm above ground or 30 cm above the highest prop root for Rhizo-
phora spp. Height was recorded using a Haga altimeter (error: ± 30
to± 60 cm per tree). Two crown diameters were measured with a
measuring tape, along the north-south and east-west directions. Crown
diameters were only recorded in the S1 stands, that is, in the locations
where UAV data were also acquired (Table 1). Plot locations were re-
corded using the Garmin 62stc GPS (± 3.6 m accuracy).

UAV data were acquired using a DJI Phantom 3 Professional
quadcopter UAV and the in-built true colour camera in July 2016. Each
flight covered an area of at least 1 ha, with both a single parallel and
orthogonal flight plan being used (Fig. 3). The flights were planned
using Pix4DCapture software and parameterised using a 90% overlap of
images to allow subsequent interpolation. Flights were conducted from
a boat located approximately 20m from the forest edge. We included
the edge of the water in some of the images even though the water
might interfere with the generation of the orthomosaic and derivation
of the Digital Surface Model (DSM). Prior to flying, 2.5m×2.5m white
tarpaulins were laid out on the ground in three positions inside the area
surveyed by the UAV, either within gaps created by lightning strikes or
other disturbances. These tarpaulins were used as a zero elevation re-
ference point with which to determine the heights of trees and the
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stand. The flying altitude was on average 109m.

2.2.2. Data processing
We calculated forest structural descriptors in the productive and

protective zones using the inventory data from the S1 stands (Fig. 1).
We reported tree density (trees ha−1), basal area (m2 ha−1), AGB (Mg
ha−1), diameter and height frequencies, and the relative density (%),
relative frequency (%), relative dominance (%) and Importance Value
(IV) of each species following standard protocols (Cintron and Novelli,
1984). AGB was estimated at the tree level using the allometric equa-
tions provided by Ong et al. (2004) for R. apiculata and the common
equation for the other mangrove species (Komiyama et al., 2005, 2008),
and afterwards scaled up to a unit of Mg ha−1 (see Table S1, supple-
mentary information).

We used the Structure from Motion (SfM) technique to create an
orthomosaic (3 cm spatial resolution) and a DSM (6 cm spatial re-
solution) for each stand. The SfM technique creates 3D point clouds
based on 2D overlapping photos, using key points in each individual
photo to match the same points in another set of photos of the same
area (Dittmann et al., 2017; Westoby et al., 2012). Further details on
the SfM technique can be found in Westoby et al. (2012) and Dandois
and Ellis (2010). We implemented the SfM technique in the Agisoft
PhotoScan software and used the UAV GPS data to create the ortho-
mosaics and the DSM as well. Subsequently, Canopy Height Models
(CHM) were obtained from the resulting DSM’s by subtracting a fixed
value, which was determined by visually inspecting the relative height

of the tarpaulins and other open areas. The latter approach assumes
that little relief is present in the image, which was the case for our study
area and also most mangrove areas. This approach also implies that
only relative heights are obtained in the CHM, although reference to the
tarpaulins at zero elevation provided a more reliable estimation of their
actual height.

Tree height was derived from the individual CHMs. The tree height
(metres) was determined by applying (i) a Gaussian filter on the CHM
and (ii) the tree detection algorithm “FindTreesCHM” available in the
package rLiDAR in R (Silva et al., 2015). The “FindTreesCHM” algo-
rithm detects trees by implementing the local maximum function with a
fixed window size (Silva et al., 2015). Applying these two procedures
required the determination of a window size and a sigma value for the
Gaussian filter, and a window size for the tree detection algorithm.
Different combinations of these parameters were tested; the sigma
value for the Gaussian filter was varied from 0.5 to 18, and the window
size for the Gaussian filter and the tree detection algorithm from 5 to
29. To select the best combination of these parameters, we compared
the results of the tree detection algorithm with the estimates of tree
density based on forest inventory data. We selected two different sets of
parameters for each zone. One set corresponded to the total tree density
and the second to the trees that were considered to form the upper
canopy based on ground inventory data. We selected these trees, as they
were the only ones that the UAV would observe, based on tree height
and the crown diameters measured in the field. Trees with crowns that
were covered by other canopies by at least 50% were excluded. After

Fig. 1. The MMFR on the west coast of pe-
ninsular Malaysia. The present study was
conducted in the Kuala Sepetang adminis-
trative range. Sampling sites indicated with a
triangle correspond to the areas where UAV
and inventory data were collected. Sampling
sites indicated with a circle correspond to
areas where only inventory data were col-
lected. The stand number is indicated as S1,
S2 or S3 in each zone. Maps adapted from
Weidmann et al. (2010) and Landsat 8 (Feb-
ruary 2014) USGS Products.
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detecting the position of each tree in the CHM using the “Find-
TreesCHM” algorithm, the height of each tree was retrieved from the
CHM.

For the AGB estimation based on the CHM, a quadratic regression
was calculated between the height measured in the field and the AGB
determined using the allometric equations for each species. We used the
data collected in stands S1, S2 and S3 in both productive and protective
zones (306 trees). The AGB for each tree detected in the UAV imagery
was then estimated using the height retrieved using the CHM. These
estimates were then scaled to units of Mg ha−1.

2.2.3. Validation of the tree detection algorithm
We selected the window sizes and the sigma value to apply the

“FindTreesCHM” algorithm by comparing the tree counts obtained by
the algorithm with the tree density estimations based on forest in-
ventory data. We could not directly compare against the locations of the
trees surveyed in the field due to the mismatch in the tree location
caused by the combined GPS errors of the UAV and the field GPS. In

addition, only the top canopy was observed from the UAV imagery,
therefore validation was achieved through visual interpretation of the
orthomosaics. The visual interpretation was undertaken by three re-
searchers. Each researcher had to identify single trees in each forest
stand from the orthomosaic. In each image, they identified trees within
the same plot areas that were sampled during the field campaign. The
number of trees identified by each researcher was then compared
against the tree count generated by the algorithm. The backgrounds of
the three researchers were: (i) an engineer, who was an expert in image
processing but with no knowledge of ecology or mangrove forests, (ii) a
biologist with advanced knowledge of mangrove forests and with no
knowledge of image processing, and (iii) a biologist and expert in
mangrove forests with basic knowledge of image processing.

2.2.4. Statistical analyses
Medians of tree height distributions measured in the field and from

the UAVs were compared using the Wilcoxon rank test and the nor-
mality of each height distribution was tested using a Shapiro-Wilk test.
The statistical analyses, the calculation of the quadratic height-biomass
relationship and the visual interpretation comparisons were performed
in R (R Development Core Team, 2011).

3. Results

3.1. Retrieval of forest structure characteristics using ground inventory data

In total, seven mangrove species were encountered in the produc-
tive and the protective zones in sampling zones S1 (Fig. 1). R. apiculata
and Bruguiera cylindrica (L.) Blume were the most abundant in the
protective zone, whereas the productive zone was dominated by R.
apiculata (Table 2).

The protective zone has a larger variation in tree diameter sizes as
compared to the productive zone (Fig. 4). Moreover, the productive

Fig. 2. Workflow to assess the UAV use in MMFR. The
left and right sides respectively describe the ground
and UAV data collection and processing steps.
Numbers refer to the sections in this document.

Table 1
Summary of forest inventory and UAV data collected in the productive and the protective
zones in the MMFR. Data collected in the S2 and S3 stands in both zones were used only to
calculate the height-biomass relationship (see Section 2.2.2).

Zone Stand No. of trees
collected

Plot size Area
sampled

UAV imagery
available

Productive S1 35 (in 5 plots) 5 m×5m 125m2 Yes (1 ha)
S2 42 (in 3 plots) 10m×10m 300m2 No
S3 108 (in 4

plots)
10m×10m 400m2 No

Protective S1 69 (in 5 plots) 10m×10m 500m2 Yes (1 ha)
S2 52 (in 4 plots) 10m×10m 400m2 No

Total 5 306 (in 21
plots)

– 1725m2 2 ha
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zone has a higher density of trees compared to the protective zone
(Table 3). Even though the average height in both zones is 14m, there
is more variability of heights in the protective zone. R. apiculata was the
dominant species in both zones in terms of basal area.

3.2. Orthomosaic images and canopy height Model generation using UAV
data

We acquired 191 images in the productive zone and 229 in the
protective zone. For each S1 stand, an orthomosaic image, DSM and
CHM were generated (Fig. 5). Whereas in the protective zone a more
diverse profile of heights was observed, the productive forest was more
homogeneous. However, the structural integrity was interrupted by
gaps created through lightning strikes.

3.3. Retrieval of forest structure characteristics using UAV data

The parameters to apply the “FindTreesCHM” in the CHM were
selected such that the tree density derived from the CHM was as close as
possible to the tree density estimated based on the ground inventory
data (see Fig. S1 and Table S2 supplementary material). Based on the
best set of parameters, the location of each tree was determined in each
CHM (Fig. 6). The validation of these results based on visual inter-
pretation are described in the supplementary material (see Table S3 and
Fig. S2).

3.3.1. Height estimation using the CHM
When taking into account all the trees measured in the field, the

median stand height (25th - 75th percentiles) in the productive zone
was 13.7m (12.6–14.8) and 14m (11.5–16.5) for UAV and field mea-
surements respectively (Fig. 7a). These two measurements were not
significantly different (Wilcoxon rank sum test, p-value= 0.375). When
we considered the trees that can only be observed from the top of the
canopy, the canopy median heights in the productive zone were 14.2 m
(13.1–15) and 15.5 m (13.5–17.5) for UAV and field measurements
respectively and were significantly different (Wilcoxon rank sum test, p-
value= 0.0066).

In the protective zone, the median stand height estimated based on
the UAV data was 25.9 m (15.6–30.3). This value was two times higher
than the tree height retrieved from field data when all trees were
considered, that is, 12.5m (8.5–18.5) (Fig. 7b). However, the differ-
ences were reduced (by 50%) when taking into account only those trees
considered to be part of the upper canopy. The median height retrieved
from the UAV data was 25.8m (14.9–30.5) and 16.5 m (11.2–22.6)
from the ground inventory data when only the upper canopy was
considered. In this zone, median heights as measured by the UAV were
significantly greater than those measured in the field considering all
trees (Wilcoxon rank sum test, p-value less than 0.0001) as well as for
the trees of the upper canopy (Wilcoxon rank sum test, p-
value= 0.0001).

Fig. 3. Diagrammatic representation of the flight plans adopted. The flights over the protective zone S1 (a) and in the productive zone S1 (b) are shown. A picture was taken during the
flight in each of the locations indicated in blue. The locations of each tree sampled in the field are shown in yellow (protective zone) and red (productive zone).

Table 2
Species composition of the protective and productive zones in the S1 forest stands where ground inventory and UAV data were collected. Relative Density (Der), Relative Dominance (Dor),
Relative frequency (Fr) and Importance Value (IV) are shown.

Species Productive zone Protective zone

Der (%) Dor (%) Fr (%) IV Der (%) Dor (%) Fr (%) IV

Rhizophora apiculata Blume 83 85 63 231 52 78 45 175
R. mucronata Lamk 6 12 13 31 0 0 0 0
Bruguiera parviflora Wight & Arnold ex Griffith 0 0 0 0 41 18 27 86
B. sexangula (Lour.) Poir. 6 2 13 21 0 0 0 0
B. gymnorrhiza (L.) Lamk. 0 0 0 0 1 1 9 11
B. cylindrica (L.) Blume 6 2 13 21 4 2 9 15
Excoecaria agallocha L. 0 0 0 0 1 1 9 11
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3.3.2. Above ground biomass estimation using the CHM
The quadratic relationship (R2=0.75) between AGB and height (H)

was determined as (Fig. 8):

= − ∗ + ∗AGB H H23.5 6.5 0.8 2 (1)

In the productive forest, estimated AGB based on the CHM was
217Mg ha−1 which was comparable to that estimated from the ground
measurements (238Mg ha−1) considering all the trees measured in the
field (Table 5). In the protective forest, the AGB predicted from the
CHM was 442Mg ha−1, which was 2.6 times more than that generated
from the field measurements of all trees (166Mg ha−1). However, the
correspondence in AGB was greater when only those trees forming the
upper canopy were observed in both zones (Table 5). In the productive
forest, we estimated 143Mg ha−1 compared to the ground estimate of
183Mg ha−1. In the protective forest, we estimated 210Mg ha−1 using
the CHM compared to the ground estimate of 143Mg ha−1.

4. Discussion

The use of lightweight UAV RGB imagery in combination with the
SfM method allowed the generation of orthomosaics and DSM/CHMs
for two forest stands in the MMFR. From the CHM, estimates of height
and AGB were generated for both forests and there was a close corre-
spondence between CHM derived data and field inventory data for the
productive zone (Table 5). Dandois and Ellis (2010), Messinger et al.
(2016), Panagiotidis et al. (2017), and Zarco-Tejada et al. (2014) also
found that the use of the SfM technique and lightweight UAV can
support the retrieval of vegetation structure characteristics. Moreover,
the use of the SfM technique to create orthomosaics and CHM is pro-
liferating as UAV use is also increasing and this technique has lower
technical requirements as compared to LiDAR (Dandois and Ellis, 2010;
Dittmann et al., 2017; Messinger et al., 2016; Panagiotidis et al., 2017;
Zahawi et al., 2015).

4.1. Forest structure characteristics retrieved from the ground forest
inventory

The productive zone is more homogeneous than the protective zone.

This is a consequence of the management strategy at MMFR, where
stands located in the productive zone are replanted with R. apiculata
seedlings two years after the clear felling, unless natural regeneration is
more than 90% (Ariffin and Mustafa, 2013). Therefore the trees in each
stand have similar ages and species composition. The protective zone
has not been disturbed for at least 60 years (Putz and Chan, 1986), and
accordingly the stand is more heterogeneous in terms of species di-
versity, tree diameter and tree height.

We found similar tree density and AGB estimates in the productive
zone as compared to Goessens et al. (2014) (Table 5). There is an im-
portant difference between our estimations and the tree density re-
ported in Gong and Ong (1995). This difference is attributed to two
factors. First, the data was collected in a 13-year-old forest stand and
second, they collected data in 1980. Although at that time the reserve
had the same current management plan, the impact of the previous
management strategies on the forest might explain this difference.

In the protective zone, we found different estimations for tree
density as compared to Putz and Chan (1986) and Goessens et al.
(2014). Putz and Chan (1986) sampled the same area as the present
study, but taking into account that 35 years have passed between both
sampling campaigns, this difference was expected. Goessens et al.
(2014) sampled 21 plots compared to the 5 plots of our study, which
can explain the difference in the tree density estimations. This differ-
ence in the number of sampling plots is also reflected in the AGB esti-
mates. We found lower AGB estimates compared to Goessens et al.
(2014) and Putz and Chan (1986) in the protective zone (Table 5). We
sampled 0.05 ha, Goessens et al. (2014) sampled 0.21 ha and Putz and
Chan (1986) sampled 0.16 ha.

4.2. Comparison between forest structure variables retrieved from the
ground forest inventory and UAV data

In the productive zone, the close correspondence between the
height and AGB estimates derived from the CHM and the ground in-
ventory data was attributed to the relative homogeneity of the forest
(Fig. 4a, Table 5). There was a small (1.3 m) but significant difference
between the median height estimates of the UAV and the field in-
ventory data taking into account only the trees from the upper canopy.
This difference is attributable in part to the measurement error asso-
ciated with the Haga Altimeter instrument and to the creation of the
CHM using the SfM technique. These results mirror the findings of
Panagiotidis et al. (2017), who found a statistically significant differ-
ence of 2m when comparing the height retrieved from a CHM based on
the SfM technique and that measured in the field in a temperate forest
in the Czech Republic.

In the protective zone, the differences between the height estimates
based on UAV and based on ground inventory, are a result of the het-
erogeneity of the forest (Fig. 4b). There is more variation in the species
composition, as well as in the diameter and height classes in this zone.

Fig. 4. Diameter frequency histograms. The histograms
of the productive (a) and protective (b) zones are
shown. Estimated density distributions shown over-
laid. All stems of the multi-stemmed trees were con-
sidered.

Table 3
Forest structure characteristics in the protective and productive zones in the S1 forest
sands where field and UAV data were collected. Average D130 and height with their
corresponding standard deviation are shown.

Forest structural characteristic Productive zone Protective zone

Average D130 (cm) 9.5 ± 3.6 9.9 ± 7.2
Average height (m) 14 ± 4 14.1 ± 7.4
Density (trees ha−1) 2800 1380
Basal area (m2 ha−1) R. apiculata: 24.5 R. apiculata: 13.2

Other species: 4.4 Other species: 3.8
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Although there was a significant difference in the height estimations in
this zone, the tree height estimates based on the CHM and measured in
the field were comparable only when considering larger trees. Con-
cerning the AGB estimates, better results were obtained when retaining
only the trees observed from the top of the canopy (Table 5). When all
trees were considered, the AGB was overestimated as the height esti-
mates for the protective zone were larger than the heights measured in
the field. Therefore, when using the quadratic relationship between
height and AGB, larger AGB estimates resulted as only the tallest trees
of the zone were used for scaling.

The ability to link forest structure variables retrieved from UAV data
to field measurements opens the possibility to further explore other
forest age stands that are under management and therefore are of si-
milar species composition and height homogeneity. If it is possible to
obtain a useful height estimation in the exploitable areas of the reserve,
local managers may then have a better estimate of height distributions
and the AGB of the stands, offering valuable information that can
support better timber extraction practices. Bendig et al. (2014),
Messinger et al. (2016) and Zahawi et al. (2015) also found that the use

of lightweight UAV and the SfM technique can be used as a tool to
estimate AGB and therefore support local management and monitoring
of crops and tropical forests.

4.3. Strengths and limitations of the present study

This study has three major strengths. (i) To the best of our knowl-
edge, this is the first study where lightweight UAVs have been used to
retrieve information on the tree height and AGB of mangrove forests.
(ii) The ground forest inventory and UAV data were collected at the
same time and in the same location. (iii) The methods and results of this
study are accessible and available to support the local management of
the MMFR.

This study has three major limitations. (i) The methods used are
suitable for monitoring the productive zones of the reserve but there are
shortcomings for the protective zones. The protective zones are more
heterogeneous and the sub-canopy is generally not observed within
optical data, which limits the retrieval of forest structure characteristics
in these areas. (ii) The UAV data were collected on only one occasion in

Fig. 5. UAV data derived products. Orthomosaic images of the protective zone (a) and the productive zone (b). CHM generated for the protective zone (c), and the productive zone (d).
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each stand because of logistical constraints. Repeated measurements
were not considered necessary because the mangrove forests are ever-
green and hence do not experience a large amount of seasonal variation
in leaf and canopy cover. However, repeated measurements over time
and on an annual basis would be useful to track changes in the struc-
ture, floristic composition and AGB of mangrove forests that are both
protected or managed for commercial purposes. This was however be-
yond the scope of the present study. (iii) The tree detection algorithm
provides a reasonable approximation of tree density, but is of limited
use for location of some single trees in both zones. A tree crown might
have several high points and not necessarily a round shape. Even by
visual inspection, tree identification in the orthomosaics proved chal-
lenging (see supplementary material Fig. S2, Table S3); although tree
counts made by visual inspection corresponded to those by the tree
detection algorithm when only the upper canopy was considered
(R2= 0.6, p-value=0.0088). Nevertheless, improvements in current
tree detection algorithms are needed, specially to increase their

Fig. 6. Trees detected in the CHM. Example of the
location of the trees detected by the algorithm in
the productive zone (a) and in the protective zone
(b). The upper image correspond to the set of
parameters using all the trees measured in the
field, and the bottom image correspond to the
parameters using only the trees that form the
upper canopy (see Table S2, supplementary ma-
terial).

Fig. 7. Comparisons between the height retrieved from the field inventory and the CHM.
The correspondence between canopy height measured in the productive (a) and in the
protective zone (b) is shown. The heights measured in the field including all the trees are
indicated with “FIELD_ALL”, the heights including only the trees observed from the top of
the canopy are indicated with “FIELD_TOP”. The heights retrieved from the CHM using
the parameters based on all the trees from the field inventory are indicated as “UAV_ALL”
and the heights retrieved using the parameters based on only the upper canopy trees are
indicated by “UAV_TOP”.

Fig. 8. Quadratic relationship between AGB and height. Relationship is based on ground
inventory data collected in the stands S1, S2 and S3 located in productive and protective
zones (see locations in Fig. 1).
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usability by non-experts of remotely sensed imagery processing.

4.4. Benefits and limitations of using UAV data for inventory of mangrove
forests

The brief time required to sample one hectare of forest is one of the
main advantages of the use of UAVs for vegetation monitoring. The
UAV data acquisitions, including flight planning and set up, took no
more than 1 h in one sampling site. The flight typically took less than
12min and covered an area of approximately one hectare of forest.
Three people were involved in the execution of the flights. In contrast,
for the ground forest inventory, three people with experience in field
sampling worked two complete days (approximately 7 h day−1) to
sample 5 percent of a hectare of mangrove forest.

The UAV facilitates access to areas that are difficult to reach by foot.
The UAV was launched from both land and from a boat, which allowed
flights to be conducted in areas that were difficult to enter, particularly
at very high or low tides. Moreover, the frequency of forest monitoring
can be increased with a combination of ground and UAV inventory.
Traditional inventory is still required in spite of the availability of new
technologies as UAV. Nevertheless, due to the poor accessibility and the
effort required to perform a traditional ground forest inventory, sam-
pling is not frequently executed in the reserve. With a combination of
both approaches, the MMFR forest could be monitored more frequently.
Furthermore, the use of UAV to monitor forests does not disturbs the
fauna and flora of the sampled area as much as traditional inventory
surveys. UAV observations also provided a unique insight and a his-
torical record with capacity for near real time reporting and validation
of change events and processes in the forest.

We suggest technology and image processing methods that are ac-
cessible for the local Forestry Department, who manages the MMFR. We
used a lightweight UAV with an RGB camera (around € 1200) that is
easy to operate after a short training. Although we used AgiSoft
Photoscan to generate the DSM and CHM, there are open source al-
ternatives available such as Ecosynth (Dandois and Ellis, 2010). Ad-
ditionally, the workflow and guidelines presented in this study can be
used by the local Forestry Department as a protocol for the use of these
technologies to monitor, manage and report on the condition of the
MMFR. Whilst the application of the protocol requires technical
training, it will also empower the local managers and support a better
management of the forest (Paneque-Galvez et al., 2014).

A limitation of this approach is that only the upper canopy is ob-
served. However this limitation mostly affected information extraction
from the protective forest. Conversely, in the productive forest, height
and AGB can be estimated well and it is therefore feasible to provide
important information on the areas where timber extraction occurs.

Other limitations are associated with increasing concerns of security
and ethical implications in the use of UAV for conservation purposes
(Paneque-Galvez et al., 2014; Sandbrook, 2015). These concerns are
reflected in the increasing legislation regulating UAV use in different
countries (Nex and Remondino, 2014; Sandbrook, 2015). Though the
benefits of using UAV for monitoring are clear, an appropriate in-
troduction to the community and the compliance of local legislation are
basic for proper UAV use in conservation or monitoring purposes. In
Malaysia, the regulation for UAV of less than 20 kg establishes that a
flight certification is not necessary. Nevertheless, there are restricted
flying areas, the maximum flight altitude is 122m (400 feet) and the
aircraft operator must have an insurance in case of an accident (Aero-
nautical Information Services, 2008). At all times, consideration needs
to be given to regulations and to the aircraft.

4.5. Guidelines for UAV flights and image processing for the local
management

Based on the experience at the MMFR, the following re-
commendations are given for UAV data acquisitions in mangrove areas:

i. Flights should be at an altitude of approximately 40m above the
estimated maximum height of the canopy (Dandois and Ellis,
2013).

ii. To cover an area of 1 ha (e.g. 100m×100m), flights need to be
planned such that they cover an area that is at least 20% greater
(e.g. 120m×120m) to be able to remove the distortion at the
borders (Dandois and Ellis, 2013).

iii. Areas of water should be excluded as this leads to errors in the
detection of the same features in stereo pairs and in the inter-
polation (Westoby et al., 2012). However, care needs to be taken if
the mangrove margin needs to be captured.

iv. Acquisitions should ideally be at low (and preferably on the in-
coming) tide as water may compromise the generation of the or-
thomosaic and the CHMs.

v. Tarpaulins should ideally be placed in open areas and in three lo-
cations positioned as a triangle, as this allows more reliable esti-
mation of tree and stand heights.

vi. The flight should be planned such that it follows an orthogonal
pattern of flying and a 90% overlap of the images, which facilitates
better matching of the component images. Forward overlaps ex-
ceeding 90% have also been used by Dandois and Ellis (2013) and
Zahawi et al. (2015).

vii. For the retrieval of biophysical properties of mangroves, we re-
commend the workflow shown in Fig. 2. The selection of the
parameters required to implement “FindTreesCHM” can be under-
taken through reference to ground inventory data, which can be
acquired alongside UAV data collections and at lower frequencies.
Additionally, it is necessary to define a different set of parameters
for the tree detection algorithm for each sampling area as the
species composition and homogeneity of the forest in each area
may vary.

5. Conclusions

In this study we demonstrated that lightweight UAVs can be used to
support the monitoring of the mangrove forest in the MMFR. We were
able to estimate tree height and AGB in the productive zone using UAV
data that had a close correspondence to the estimates based on ground
forest inventory. Therefore, valuable information can be generated for
the local management, especially in areas where timber extraction

Table 5
Summary forest structure characteristics estimated in this study using the field inventory
data and the CHM based on the UAV data. Results from other studies based on forest
inventory data in the same reserve are also shown: (i) Goessens et al. (2014), (ii) Gong
and Ong (1995) - comparison with a 13-year-old forest stand -, and (iii) Putz and Chan
(1986). AGB estimations in this study included all species whilst other studies only
considered R. apiculata.

Parameter Zone Field
inventory
data

CHM
(all
trees)

CHM
(top
trees)

Other studies

Tree density
(tree ha−1)

Productive 2800 (all
trees)
1600 (top
trees)

2562 1578 2236 (i)
9250 (ii)

Protective 1380 (all
trees)
660 (top
trees)

1243 596 2283 (i)
681 (iii)

Median height
(m)

Productive 14 (all)
15.5 (top)

13.7 14.2 12.6 (i)

Protective 12.5 (all)
16.5 (top)

25.9 25.8 9.7 (i)

AGB (Mg ha−1) Productive 238 (all)
183 (top)

217 143 216 (i)
131 (ii)

Protective 166 (all)
143 (top)

442 210 415 (i)
270–460 (iii)
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occurs.
The use of UAV data in mangroves studies can lead to significant

advances in quantifying forest growth stages and changes over time. It
can also increase the frequency of monitoring and complement tradi-
tional forest inventory. Therefore, this study recommends elements of
UAV planning and acquisition in the development of protocols for
mangrove surveys. We also present guidelines for the local management
to incorporate this technology in the regular monitoring of the MMFR.
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