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The recent increase in sewage pollution in the Negombo Lagoon, Sri Lanka, has led to a growing interest in
understanding its impact on the local aquatic ecosystem. Physicochemical and general microbiological param-
eters of the lagoon water (n = 84) were measured at seven sites with contrasted levels of fecal and organic
pollution, and their correlation with the presence of total coliform bacteria (TC) was examined. A linear mixed-
effect model revealed that heterotrophic bacterial concentrations and electrical conductivity significantly
correlated with TC concentrations. Additionally, six individuals of Crassostrea cucullata oysters were sampled
from five sites (n = 30) to assess their TC levels and compare their variation across sites. Significant differences in
TC levels in oysters were observed across the study sites, with oysters from site S7 located in the Northern part of
the lagoon being the most contaminated ones. Fecal indicator bacteria, Escherichia coli, were found to be present
across all the studied sites except S5. Additionally, oysters from five sites tested positive for E. coli contamination.
The smallest oysters were found at the site most contaminated by microbial load (S2), which may suggest that
oysters had decreased filtering activity at the site in response to pollution. Overall, this is the first comprehensive
study to provide comparative quantitative data on fecal contamination of oysters in the Negombo Lagoon and its
surrounding water.

1. Introduction (e.g., habitats and spawning grounds for finfish) and economic benefits

(e.g., seafood and fuel wood) (Rodrigues-Filho et al., 2023; Nijamdeen

The rising human population has led to an increased dependence on
coastal ecosystems, as they supply subsistence resources (e.g., seafood,
salt), logistical services (e.g., marine transport), and recreational ser-
vices. These benefits gained from coastal areas have resulted in higher
human density in coastal areas than in non-coastal areas (Neumann
et al., 2015). Coastal ecosystems encompass a diverse range of habitats,
including seagrass meadows, tidal flats, coastal lagoons, and estuaries
(Seitz et al., 2013). Coastal lagoons provide both ecological importance

et al., 2022), which offer seafood proteins and work opportunities for
humans. Human settlements around coastal ecosystems exert multiple
anthropogenic pressures (e.g., discharge of effluents from agriculture,
animal rearing, aquaculture and domestic households) on the ecosys-
tems, which affect the structure and function of coastal habitats (Newton
et al., 2020). Seafood has become one of the most widely consumed
sources of protein globally due to its nutritional benefits (long-chain
n-3-fatty acids and vitamin D content) and health benefits (anticancer
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properties, improved growth and beneficial for brain function)
compared to other sources of protein (Hosomi et al., 2012; Laskowski
et al., 2018). The consumption of seafood, such as oysters, in their raw
state has become increasingly popular in developed countries (Botta
et al., 2020). This is possible due to their strict water quality guidelines,
which ensure it is safe for human consumption, and this practice is
common in European and American cuisines (Pérez-Lloréns et al.,
2021). However, developing countries often lack the necessary infra-
structure to manage waste and effectively reduce sewage contamination
of aquatic systems. For example, Rondon-Espinoza et al. (2022) per-
formed a study on Yarinacocha lagoon, located in the Peruvian Amazon
in Peru. The microbiological quality of the lagoon water was poor, with
consequences for the fish marketing chain. They attributed it to the lack
of a wastewater treatment system, carry-over of contaminants from
anthropogenic activities by the rain, and waste from animal rearing sites
surrounding the lagoon. As the consumption of seafood remains a highly
valued source of protein, it is necessary to monitor water sources used
for seafood production, as well as drinking water and recreational
swimming, to ensure human safety. As mentioned earlier, the sources of
fecal contamination are multiple. Sewage effluents such as septic
leachate or untreated domestic wastewater usually contain substantial
amounts of organic materials and fecal bacteria, including total co-
liforms (TC) (Fouad et al., 2024). TC are a large group of gram-negative,
non-spore-forming, lactose-fermenting bacteria mostly derived from
human and animal wastes, and their presence in aquatic environments is
commonly used as an indicator of fecal contamination. Escherichia coli
(E. coli), a subset of TC, serves as a more specific indicator organism and
is frequently used in water quality monitoring (World Health Organi-
zation, 2017). The presence of TC in a water body suggests that patho-
genic bacteria, such as Shiga-toxin-producing Escherichia coli, may also
be present (Martin et al., 2016; Some et al., 2021). Downstream sewage
outfalls, TC, and more generally, heterotrophic bacteria (HTB, which
include TC) tend to survive better or even proliferate due to the organic
matter concomitantly released into the environment (He et al., 2022).
Unsurprisingly, the abundance of HTB and TC is often positively
correlated in aquatic environments (Diaz-Torres et al., 2022; Mondal,
2020). Another source of organic matter and fecal bacteria is surface
runoff from agricultural areas into aquatic ecosystems.

Several studies and reviews have established a direct link between
TC abundances and environmental parameters (Davies et al., 1995;
Hong et al., 2010; Petersen and Hubbart, 2020). Salinity is one of the
environmental variables that greatly influences the diversity and dy-
namics of microorganisms in aquatic environments. High saline envi-
ronments expose microorganisms to osmotic stress, which affects
metabolic processes (Gomaa et al, 2022). A study conducted by
Soueidan et al. (2021) on the May River in South Carolina found that TC
concentrations were high in the headwaters and decreased towards the
mouth of the river, where freshwater mixes with seawater. The authors
attributed this decline to the osmotic stress caused by the salinity levels
at the mouth of the estuary. Additionally, other environmental factors
such as elevated temperatures, non-neutral pH, and high dissolved ox-
ygen alter the decay rates of total coliforms (Hong et al., 2010). For
example, An et al. (2002) documented lower monthly Escherichia coli
concentrations in the marinas of Lake Texoma during the summer sea-
son. They explained it through algal photosynthesis, which increased
water pH and Dissolved Oxygen (DO) concentrations (An et al., 2002).
This phenomenon is enhanced in nutrient-rich (i.e., nitrate- and
phosphate-rich) aquatic bodies (An et al., 2002; Van der Steen et al.,
2000). High DO levels in combination with UV-radiation result in the
formation of reactive free radicals (e.g., singlet oxygen, hydroxyl- and
hydroperoxyl-groups) which cause cellular damage to fecal coliforms,
including Escherichia coli (Hughes, 2003). Conversely, suspended solids
promote the survival of fecal indicator bacteria by adsorbing and pro-
tecting them from the adverse effects of UV-radiation (Petersen and
Hubbart, 2020). Moreover, suspended solids of organic matter favor the
survival of heterotrophic bacteria, including coliform bacteria
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(Amanidaz et al., 2015; Boualam, 2002).

Studies have shown that shellfish such as mussels and oysters can
remove excess nutrients and suspended particulate matter from the
water column through their filter-feeding behaviour (Dong, 2023c; Fil-
ippini et al., 2022; Sauvey et al., 2021). Some studies reported that this
process can improve water quality locally (Gray et al., 2021). Thanks to
their filtration activity, shellfish also remove bacteria from the water
column, as reported by Hajisafarali et al. (2021) for the fish pathogen
Flavobacterium columnare. This cleaning behaviour could impact the TC
contamination levels in the water column. This has driven research to
explore their potential use as bioremediators in aquatic environments
(Li et al., 2019; Silva et al., 2012).

The Negombo lagoon is a coastal lagoon subjected to fecal contam-
ination by shoreline populations (Ayitey et al., 2024; Kanchanamala
et al., 2024). Shellfish, such as oysters, utilize these ecosystems as their
habitat, making them suitable for exploring how environmental factors
influence the presence of TC and investigating the potential use of
oysters to remediate TC in aquatic systems. Studies on fecal contami-
nation of water bodies in Sri Lanka have primarily focused on freshwater
systems (Mahagamage et al., 2019, 2020; Thilakarathna et al., 2023).
Therefore, a knowledge gap exists regarding TC in coastal lagoons in the
country. This study aims to assess TC contamination levels in the water
and oysters of the Negombo Lagoon, Sri Lanka, and to address the in-
fluence of environmental factors on TC abundance. It was hypothesized
that i) TC abundances in lagoon water are correlated with some physi-
cochemical parameters, ii) TC numbers in lagoon water and oysters are
higher in areas that experience greater anthropogenic pressure, and iii)
fecal indicator bacteria, Escherichia coli, contamination were present
across all sites in the lagoon water. Those hypotheses aim to advance our
understanding of the environmental drivers of microbial contamination
and the potential use of oysters in bioremediation efforts within lagoon
ecosystems.

2. Materials and methods
2.1. Study area description

The Negombo Lagoon is a coastal lagoon located on the west coast of
Sri Lanka. Some parts of the lagoon are surrounded by residential
households and industries, which significantly influence the ecological
dynamics of the ecosystem. The northern part of the lagoon is heavily
impacted by high levels of anthropogenic pollution. In contrast, the
southern part of the lagoon is a protected, less disturbed area.

2.2. Sample collection

Ethics clearance (Reference: 2021.08.17, April 25, 2022) was ob-
tained from the Ethics Review Committee of the Faculty of Allied Health
Sciences of the University of Ruhuna, Sri Lanka. Seven sample sites (S1-
S7, coordinates in Supplementary 1) were identified and chosen for the
contrasted levels of fecal contamination. S1, S2, and S7 are all located in
the northern section of the lagoon and receive mainly domestic and
agricultural effluents (Fig. 1). S3 is located in the western section of the
lagoon and receives effluents mainly from shrimp farms. S6 is located on
the eastern section of the lagoon and receives effluent from industries.
S4 and S5 are in the southern part close to the Dutch canal and the
Dandugam-Oya River, respectively. At each sampling site, triplicate
water samples were aseptically collected for microbial assessment of
HTB and TC in the laboratory. The samples were kept in sterile con-
tainers and transported at 2-6 °C to the laboratory for analysis. Out of
seven sites that were sampled (S1-S7), oysters were only found in five
sites (i.e., S1, S2, S3, S6, and S7). Six oysters were randomly handpicked
from the five sites (n = 30) with the assistance of a local fisherman, to
assess their microbial load. The oysters were stored in sterile plastic bags
and kept in ice coolers at 2-6 °C before being transported to the
laboratory.
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Fig. 1. A study map showing the different sampling sites in the Negombo Lagoon, Sri Lanka and associated potential sources of contamination. The Landsat image

was obtained from Google Earth Explorer.

2.3. Physical characterization of oysters

The shell length (mm) and weight (g) of the oysters were determined
using a measuring board and a weighing balance, respectively. After
shucking the oyster meat, the shell morphological features were exam-
ined using a shellfish identification guide as described in our previous
study (Ayitey et al., 2024). Based on morphological features, the oysters
were identified to the genus and species level as Crassostrea cucullata.

2.4. Measurement of physicochemical parameters

All samples were randomly collected in triplicate from each sampling
site. The parameters measured in situ included temperature, electrical
conductivity (EC), dissolved oxygen (DO), pH, total dissolved solids
(TDS), and salinity. They were measured by immersing a multi-
parametric probe (Hanna Instrument-HI 98194, Woonsocket, USA) into
the water and waiting a few minutes for the value to stabilize before
recording it. The remaining environmental parameters, i.e. biological
oxygen demand (BODs), nitrate and phosphate concentrations, were
measured ex situ in the laboratory. Nitrate and phosphate concentrations
were determined by spectrophotometry (Cole-Parmer-Jenway 6405,
Staffordshire, UK). Two vials were filled with 1 mL of the lagoon water.
One of the vials was used to calibrate the spectrophotometer, and the
other vial was mixed with a reagent pack (Hach) to determine the
concentration of nutrients in the sample using the spectrophotometer.
Additionally, for the calculation of the biological oxygen demand
(BODs), the Winkler titration method was used to determine the dis-
solved oxygen levels of the water samples initially and after 5 days of
incubation at room temperature, described in Ayitey et al. (2024). The
BODs5 was calculated as follows:

BODs = (DO), — (DO);

Where (DO); is the initial dissolved oxygen level in the water sample,
and (DO); is the final oxygen level in the water sample.

2.5. Enumeration of total coliform (MPN/100g) in oyster samples

Crassostrea cucullata oysters were shucked, and their meat was ho-
mogenized using a sterile mortar and pestle. About 22.3 g of the ho-
mogenized oyster meat was diluted in 200 mL of phosphate-buffered
saline solution (PBS) (“oyster diluent”) to be used for the analysis.
Three different volumes of the oyster diluent (i.e., 10 mL, 1 mL and 0.1
mL) were pipetted 5 times into test tubes (n = 15 per oyster) containing
double strength (10 mL of Lauryl Tryptose Broth (LTB) for 10 mL
pipetted sample) and single strength (9 mL and 10 mL of LTB for 1 and
0.1 mL pipetted samples, respectively) broth with inverted Durham
tubes to test for coliform-containing samples. These tubes were incu-
bated at 37 °C for 24-48 h, after which the positive tubes (i.e., those
showing growth and gas production) were counted and compared with
the MPN chart to enumerate TC concentration (MPN/g) (Blodgett,
2010). Afterwards, the TC values obtained from the MPN chart were
divided by 11.15 g and multiplied by 100 to obtain TC concentrations in
MPN/100g units.

2.6. Enumeration of total coliforms in lagoon water samples

TC were enumerated using the most probable number (MPN)
method. Three different volumes of lagoon water (i.e., 10 mL, 1 mL and
0.1 mL) were pipetted five times into test tubes (n = 15 per sample)
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containing double strength (10 mL of Lauryl Tryptose Broth (LTB) for
the 10 mL pipetted sample) and single strength (9 mL and 10 mL of LTB
for 1 and 0.1 mL pipetted samples, respectively) broth with inverted
Durham tubes to test for samples containing coliforms as performed in
Ayitey et al. (2024). The tubes were incubated at 37 °C for 24-48 h, after
which the positive tubes (i.e., those showing growth and gas production)
were counted and compared with the MPN chart to calculate TC con-
centration per 100 mL (Ballance and Bartram, 1996).

2.7. Measurement of heterotrophic bacterial abundance in water and
oysters samples

HTB were enumerated in the lagoon samples using the standard plate
count technique with nutrient agar (Sisco Research Laboratories) as the
culture medium. Seven test tubes were filled with 9 mL of distilled water
or phosphate-buffered saline (PBS) solution and then autoclaved. To
determine the abundance of HTB in lagoon water, the tubes containing
distilled water were inoculated with 1 mL of the lagoon water sample,
using a 10-fold dilution factor (10’1 to 10~ 7-fold dilutions). 0.1 mL of
each dilution was poured onto the nutrient agar and spread uniformly.
The plates were then incubated at 37 °C for 24 h. After incubation, the
number of colonies within the range of 30-300 colony-forming units
(CFU/mL) was counted and recorded (Alo et al., 2012). However, in
determining the abundance of HTB in lagoon oysters, the tubes con-
taining PBS were inoculated with 1 mL of the oyster diluents, using a
10-fold dilution factor. We then transferred and spread uniformly, 0.1
mL of the dilution onto the nutrient agar. The plates were then incubated
at 37 °C for 24 h. The number of colonies was counted and their
abundance computed as colony-forming units per gram (CFU/g). The
abundance of bacteria was estimated by applying the formula below.

cxd

Bacterial load = —

01 (eq 1)

Where c is the number of colonies counted, and d is the dilution factor of
the sample.

2.8. Assessment of the presence of Escherichia coli in water and oyster
samples

An inoculating loop was used to collect samples from the tubes that
tested positive for the presence of coliform bacteria. These samples were
then streaked onto Eosin Methylene Blue (EMB) agar plates to determine
the presence of E. coli. The streaked plates were then incubated at 37 °C
for 24 h. Afterwards, the plates were observed for the formation of green
metallic sheen colonies (i.e., an indication of the presence of E. coli)
(Fig. 2A). Furthermore, biochemical tests (indole test) were performed
on colony samples that did not test positive on the EMB plates (Fig. 2B).
This was achieved by taking a clean bacterial colony from these plates,
inoculating it into tryptone water, and incubating it at 37 °C for 24 h.
Afterwards, five drops of Kovac’s reagent were added to the test tubes to
confirm the presence of E. coli in the samples. The positive indole test
showed purple colouration, while the negative tubes displayed
yellowish colour (Fig. 2C & D).

2.9. Data analysis

Microsoft Excel and RStudio 4.2.0 were used for statistical analyses.
A linear mixed model with sampling site as a blocking factor was used to
determine the environmental variables which had a significant rela-
tionship with TC in the lagoon water environment. Both predictors
(HTB, temperature, TDS, DO, BODs, nitrate, phosphate, EC, salinity, and
pH) and response (TC) variables were log-transformed to meet the
parametric assumption of homogeneity and homoscedasticity before
running the model in R. The ggplot tool in R was used to visualize our
ANOVA and regression results. The variation of TC concentration in
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Fig. 2. The following test results indicate A) presence of E. coli on culture plate
media, B) absence of E. coli on culture plate media, C) presence of E. coli in
tryptone water, D) absence of E. coli in tryptone water.

oysters across the sampling sites was examined using a one-way ANOVA
test. The response variables (i.e., TC) were square root transformed
before running the ANOVA test to adhere to the parametric assumptions
of homogeneity and homoscedasticity. Finally, a post hoc test (Tukey
HSD) was used to identify pairs of sampling sites for which differences in
TC concentrations in oysters were significant. A Pearson correlation was
used to evaluate the relationship between the mean TC in lagoon water
and oysters.

3. Results
3.1. Physicochemical and microbiological parameters of lagoon water

Temperatures of lagoon water ranged between 30.61 and 34.64 °C
across all sampling sites (Table 1). Salinity ranged between 15.64 and
32.82 ppt, with the lowest mean values recorded at S4 (i.e., 20.98 ppt)
and S5 (i.e., 20.92 ppt) (Table 1). The sample site S5 recorded the
highest mean DO concentration (1.03 mg/L) and the lowest BODs level
(<2.2 mg/L). Mean phosphate concentration was found to be highest at
S4 (i.e., 0.26 mg/L) and that of nitrate (i.e., 2.5 mg/L) at S7. Mean EC,
pH and TDS values were found to be highest at S2 (42.79 pS/cm, 8.04
and 21.39 ppt, respectively). The microbial parameters of lagoon water,
such as HTB and TC concentrations, were found to be highest at S1
(mean values: 2.18 x 107 CFU/mL for HTB and 1129 MPN,/100 mL for
TC) and S2 (mean values: 2.10 x 107 CFU/mL for HTB and 1826 MPN/
100 mL for TC) (Table 1). Moreover, high variations in concentrations
were observed over weeks, not just across sampling stations (Supple-
mentary 2 & 3).

3.2. Relationship between environmental variables and total coliform
abundance in lagoon water

A linear mixed-effect model showed that HTB and EC were the only
variables that had a significant effect (p < 0.05) on TC concentrations
across the different sample sites (Table 2). After log;( transformation to
ensure normality of the data, HTB showed a positive correlation with the
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Mean (+SE), minimal and maximal values of microbiological and physicochemical parameters that were measured in the waters of the Negombo Lagoon, Sri Lanka.

TDS(ppt) pH BODs(mg/L) Nitrate(mg/L) Phosphate(mg/L) EC(pS/cm)

DO(mg/L)

TC(MPN/100 mL) Temperature(°C) Salinity(ppt)

HTB(CFU/mL)*10”

Parameters

S1

31.3 + 3.208
7.55-39.46

0.21 + 0.048
0.05-0.42

1.95 + 0.352
0.96-5.39

6.18 + 0.561
3.84-8.48

7.64 + 0.047
7.26-7.83

17.91 + 1.567
7.05-23.8

0.54 + 0.146
0.23-1.78

26.63 + 1.344
17.8-31.45

31.19 + 0.104
30.61-31.91

1129.43 + 113.288
540-1749.63

2.18 £ 0.107
1.64-2.73

Mean (+SE)

Min - Max

S2

42.79 + 2.305
32.66-50.41

0.11 + 0.018

0.03-0.23

1.91 £+ 0.157
1.23-3.08

7.38 + 0.297
4.88-10.08

8.04 £+ 0.005
8.01-8.08

21.39 £ 1.149
16.32-25.2

0.56 + 0.078
0.37-1.21

27.41 £ 1.630
20.19-32.82

30.99 + 0.050
30.73-31.26

1826.17 + 279.628
350-3454.22

2.1 +£0.146
1.42-2.9

Mean (+SE)

Min - Max

S3

37.23 + 2.450
27.89-49.45

0.12 + 0.016
0.05-0.23

2.17 £0.115
1.41-2.72

8.33 + 0.383
6.24-10.48

7.82 + 0.040
7.56-7.96

18.65 + 1.060
13.9-22.27

0.57 + 0.126
0.21-1.64

23.2 +1.595
17-28.58

31.72 + 0.056
31.43-32

879.41 + 160.244
280-1749.63

1.27 +0.122
0.53-1.98

Mean (+SE)

Min - Max

sS4

38 + 0.394
35.26-39.63

0.26 + 0.048
0.05-0.48

1.84 +0.173
0.93-2.96

5.9 + 0.311
4.4-7.84

7.68 + 0.054
7.26-7.91

18.2 + 0.347

0.82 + 0.172
0.39-2.24

20.98 + 1.001
17.16-24.73

31.7 £ 0.120

411.67 + 80.064

70-920

1.89 + 0.116
1.18-2.64

Mean (+SE)

Min - Max

16.25-19.57

31.12-32.65

S5

37.76 £+ 0.832
32.61-40.6

0.13 £+ 0.020
0.04-0.24

2.07 £ 0.166
1.05-2

2.22 4+ 0.222
1.28-3.84

7.61 £+ 0.061
7.14-7.96

18.84 + 0.434
16.25-20.3

1.03 + 0.229
0.5-2.71

20.92 +1.348
15.64-25.47

32.15 £ 0.216
31.25-33.61

91.22 + 25.024
7.8-280

0.89 + 0.092
0.33-1.36

Mean (+SE)

Min - Max

S6

40.84 + 2.478
34.41-46.77

0.12 £+ 0.023
0.01-0.25

2.25 £+ 0.207
0.96-3.65

6.41 £+ 0.670

7.77 + 0.044
4.64-8.32

7.54-8.03

20.42 £+ 0.835
17.22-23.38

0.75 £+ 0.096
0.47-1.35

25.96 + 1.190
21.39-30.14

32.34 + 0.309
31.14-34.63

791.93 + 169.247
220-1749.63

1.94 + 0.122
1.43-2.86

Mean (+SE)

Min - Max

S7

41.45 + 2.216
32.82-49.25

0.15 + 0.019
0.08-0.24

2.5+ 0.146
1.62-3.29

10.06 + 0.690
8.4-12.72

7.86 + 0.076
7.54-8.39

21.14 + 1.306
16.42-29.64

0.88 + 0.099
0.55-1.52

26.36 + 1.567
20.28-31.92

32.74 £ 0.313
31.64-34.02

588.33 + 156.649
70-1600

2.02 + 0.149
1.22-2.96

Mean (+SE)

Min - Max

Dissolved Oxygen, BODs = Biological Oxygen Demand, SE. = Standard Error.

Total Coliform, EC = Electrical Conductivity, DO

Total Dissolved Solids, TC

ppt = Parts Per Thousand, Min = Minimum, Max = Maximum.

Heterotrophic Bacteria, TDS

HTB =

Marine Environmental Research 212 (2025) 107561

Table 2

A linear-mixed effect model showing the correlation between total coliforms and
environmental variables. All data were log;o-transformed before running the
model.

Linear Mixed-Effect Model

Predictors Estimates CI P-value
(Intercept) —11.08 —31.68-9.52 0.287
HTB 0.73 0.00-1.45 0.049
Temperature 1.52 —9.38-12.41 0.782
Nitrate -0.14 —0.77-0.49 0.65
Phosphate 0.28 -0.22-0.77 0.27
pH 7.22 —3.02-17.46 0.164
Dissolved oxygen —0.08 —0.61-0.45 0.766
Electrical Conductivity -1.59 —3.06--0.13 0.033
Salinity 0.15 -1.85-2.15 0.885
Biological Oxygen Demand 0.16 —0.51-0.82 0.642
Total Dissolved Solids 1.75 —0.32-3.82 0.097
Random Effects

¢ 0.13

T00 Stations 0.11

1CC 0.45

N stations 7

Observations 84

Marginal R%/Conditional R 0.193/0.555

abundance of TC, while EC showed a negative correlation (Table 2). Our
model demonstrated weak explanatory power for fixed effects,
capturing only 19 % of the variation (Marginal R = 0.19), while a large
portion (81 %) remained unexplained.

3.3. Inter-site variations in total coliform concentrations in oyster tissues

No oysters were found at the sampling sites S4 and S5, i.e. those with
the lowest salinity. Oysters between 70 mm and 85 mm in length were
dominant across the five other sampling sites. The largest oysters were
found in sites 1, 3, and 7 (Fig. 3). These sites are in the northern and
western parts of the Negombo lagoon. There was no significant differ-
ence in oyster length and weight across the five sites that were studied
(Fig. 3). A Pearson correlation coefficient revealed a significant rela-
tionship between length and weight of oysters (R=0.64, p=0) (Supple-
mentary 4). A one-way ANOVA test indicated a significant difference
(F4, 25 = 6.32; p = 0.00118) of TC concentrations in oysters across sites.
A Tukey HSD test revealed that TC concentrations in oysters were
significantly different at S7 from the other sites (except site S1). The
concentrations were highest at site S7, and lowest at S2, S3, and S6
(Fig. 4).

3.4. Assessment of Escherichia coli presence in water and oyster samples

The overall tests revealed that the sampling sites (except S5) were
contaminated with E. coli in the water (Supplementary 5A). However,
the oysters from all five studied sites tested positive for E. coli contam-
ination (Supplementary 5B). Additionally, no significant correlation was
observed between mean TC concentrations in water and those in oysters
(Pearson correlation, p = 0.848) (Fig. 5).

4. Discussion

Environmental parameters in aquatic environments are constantly
influenced by both natural phenomena (e.g., tidal inundation and
rainfall) and anthropogenic factors (e.g., sewage, aquaculture, and
agriculture). In this study, dissolved oxygen (DO) levels were found to be
extremely low at all sites, suggesting the influence of factors such as
reduced oxygen solubility and elevated decomposition activity by aer-
obic bacteria. Surface water temperatures ranged from 30.61 °C to
34.63 °C, which was consistent with a previously reported study for the
Negombo lagoon with recorded temperatures between 26.0 and 34.1 °C
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(Gammanpila, 2013). Elevated temperatures are known to reduce the
solubility of oxygen in water (Hsieh et al., 2021), leading to oxygen loss
into the atmosphere. This may have contributed to the extremely low
DO levels that were recorded. Similarly, Hsieh et al. (2021) reported low
mean DO concentrations (2.76 mg/L) at the Dandugam Oya River
outflow of the Negombo lagoon. The authors further observed that DO
levels occasionally dropped below 1 mg/L in the Hamilton Canal. They

attributed the trend in observations to the discharge of sewage from
anthropogenic sources into the Negombo lagoon. Concurrently, the
mean biological oxygen demand (BODs) values were moderately high
(<3 mg/L, Hu et al., 2022) across the sampling sites (except site S5),
which is possibly due to sewage discharge into those sites. Given the
exposure of our sampling sites to sewage pollution, it is possible that the
influx of organic waste contributed to the low DO levels observed.
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Fig. 5. Pearson correlation between mean total coliform concentrations in lagoon water and oysters in the Negombo lagoon, Sri Lanka.

This study examined several environmental factors that may influ-
ence the total coliform (TC) bacteria concentration in the Negombo
lagoon. Two were identified by a linear mixed-effects model: hetero-
trophic bacteria (HTB) and electrical conductivity (EC). TC concentra-
tion was inversely correlated with EC, suggesting that higher levels of
dissolved ions (e.g., salt) were associated with lower TC concentrations.
Generally speaking, high levels of dissolved ions (e.g., Na*, Mg?*, CI")
in aquatic environments are detrimental to coliform bacteria as they are
responsible for an osmotic stress and affect their enzymatic activity
(Gomaa et al., 2022). A similar finding was reported by Bordalo et al.
(2002), where the authors simulated conditions in the Bangpakong
River, Thailand, to examine how varying salinity and light exposure
affect microbial die-off. Their results revealed that fecal coliforms had
the highest survival rates in experimental tanks with the lowest salinity
levels. Additionally, a study conducted by Kanchanamala et al. (2024)
on the Negombo lagoon overlapped our sampling period. They reported
an inverse relationship between salinity levels and TC concentrations
over time. In April, when salinity levels were relatively low, TC con-
centrations were comparatively high. Conversely, in August, high
salinity levels corresponded with lower TC concentrations. The authors
attributed elevated TC concentration levels to sewage discharges from
nearby fish processing facilities and restaurants located close to the
sampling sites.

The positive linear relationship between TC and HTB, as revealed by
our mixed model, can be attributed to the fact that coliform bacteria are
a subset of heterotrophic bacteria in aquatic environments. Spatial
variations in both HTB and TC can be attributed to the fact that the
northern part of the lagoon has higher anthropogenic contamination
levels compared to the southern part. Additionally, the introduction of
both heterotrophic bacteria and their associated coliform bacteria into
receiving water bodies can be influenced by rainfall patterns. This nat-
ural phenomenon elevates the bacterial loads in the environment
(Diaz-Torres et al., 2022). Our study was conducted during the
pre-monsoon season, which was marked by rainfall in late April
extending into May 2022 (personal observation). This corresponds to
observations made by Kanchanamala et al. (2024) on the Negombo
lagoon, where the authors noted a salinity drop in April 2022 (likely due
to rainfall) and a concomitant increase in microbial concentration. This
suggests that rainfall may have contributed to the elevated TC loads,
which exceeded the compliance threshold recommended by the Food
and Drug Administration of the United States, observed in the lagoon
(<43MPN/100 mL compliance for shellfish waters, US FDA, 2017).

This study further assessed TC contamination levels in oyster tissue
across the various sampling sites. They were significantly different ac-
cording to the one-way ANOVA test, with the highest mean TC numbers

observed in oysters from S7, followed by S1, both located in the northern
part of the Negombo lagoon. Site S7 receives sewage effluents primarily
from the city’s major market and surrounding domestic households, as
reflected in its mean BODs levels. Similarly, S1 is influenced by sewage
discharges from the Hamilton Canal. However, the oysters at S1 were
not statistically more contaminated than those at S2 (also located in an
area exposed to considerable anthropogenic pollution) or S3 and S6
(located in less contaminated areas). Oysters facing high levels of
sewage pollution may adopt strategies such as reduced filter-feeding
behavior and active purging of contaminants in response to the
contamination levels (Bringer et al., 2021; Gokoglu, 2021; Salama et al.,
2021). Such a process may represent a form of homeostasis where oys-
ters regulate internal conditions despite external pollution levels. An
additional protective mechanism against pollution might be the egestion
of waste in the form of pseudo-feces (mucus-bound masses which are
ejected by bivalves as waste), which are subsequently buried by sedi-
ment through siltation dynamics, as reported by Craig et al. (2022) for
Crassostrea virginica. In their study, the egestion process helped reduce
the concentrations of contaminants (microplastics) within the oyster
tissues. Moreover, our study did not observe a significant relationship
between TC in lagoon water and TC in oysters. Contrariwise, Kancha-
namala et al. (2024) reported a significant and strong positive correla-
tion between Escherichia coli (the main species of fecal coliforms) in
oysters and their corresponding water samples in the Negombo lagoon.
This suggests that oysters filter fecal bacteria into their tissues, reflecting
the fecal contamination levels in the surrounding water, which partly
aligned with our observations.

Of note, the smallest average oyster length (74 mm) and weight
(114g) were recorded at site S2, located in a contaminated area of the
lagoon. Oysters generally thrive in good water quality conditions and
are used as sentinel species to monitor sewage pollution in aquatic en-
vironments (Volety et al., 2014). Therefore, site S2, which was reported
to experience a high microbial contamination load, may contribute to
the stunted oyster development that was observed. The lagoon water at
the studied sites (except S5) was contaminated with fecal indicator
bacteria, Escherichia coli. These sites were characterized by anthropo-
genic activities (e.g., domestic sewage, piggery, aquaculture, fish pro-
cessing waste, hospital effluence), which contribute fecal bacteria into
the lagoon ecosystem (Ayitey et al., 2024; Kanchanamala et al., 2024).
The absence of fecal indicator bacteria from S5 can be attributed to the
fact that the site mainly receives freshwater discharge from the
Dandugam-Oya River, which is less likely to contain fecal contaminants
(Personal observation). However, fecal indicator bacteria were recorded
in oysters from the five sites that were studied. This can be attributed to
the discharge of human and animal waste effluence from the densely



S. Ayitey et al.
populated communities surrounding those sites.
5. Conclusion

Microbial contamination of coastal water bodies, particularly la-
goons, remains a major public health concern. Elevated total coliform
levels indicate the risk of fecal contamination by fecal indicator organ-
isms, Escherichia coli. Sewage discharge into the Negombo lagoon
ecosystem plays a critical role in driving these contaminations. This
emphasizes the need for improved waste management systems within
the city. Strengthening such interventions would help improve
ecosystem health and reduce the risk of fecal pollution. Future studies
should focus on identifying pathogenic microbes that are present in the
lagoon ecosystem. Furthermore, research would be needed to explore
the potential active purging of coliform bacteria by oysters, which would
fit into their use in bioremediation of fecal contamination in aquatic
environments. Environmental parameters, such as heterotrophic bacte-
ria and dissolved ions, may serve as early warning indicators of
contamination, providing valuable insights for resource managers in
their monitoring efforts. Future studies should investigate the long-term
interactions between rainfall patterns, waste management practices, and
microbial pollution in the Negombo lagoon to better understand the
contribution of rainfall-driven contamination to the ecosystem.
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