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ARTICLE INFO ABSTRACT

Editor: Jay Gan Mangroves are essential coastal ecosystems distributed across tropical and subtropical regions, typically found at
the confluence of river systems and the sea. Although air temperature has long been recognised as a key
Keywords: determinant of mangrove distribution, upwelling systems that transport cold, nutrient-rich waters from the deep
Wetlands o ocean to the surface can also impede mangrove propagule dispersion. However, global studies that examine the
Mangrove limits influence of upwelling on mangrove distribution remain scarce. In this study, our objective was to investigate the
Species range . . . o . . . i
Biogeography relationship between upwelling Systems and global mangrove dlstr.lbutlon, with an empbhasis on range .lllTlltS a.nd
Aridity area extent. We adopted a novel multi-scale approach by analysing mangrove areas at several minimum size
Upwelling thresholds (>5 ha, >50 ha, >100 ha, >200 ha, and > 300 ha) to evaluate the scale dependence of upwelling
effects. Our regression models revealed a clear trend: the coefficient of determination (RZ) increased from 0.20
for patches >5 ha to 0.37 for >50 ha, 0.43 for >100 ha, 0.49 for >200 ha, and reached 0.53 for patches >300 ha.
Furthermore, low-upwelling regions harbour 47.7 % of the total mangrove area (66,763 km?), whereas high-
upwelling regions account for only 0.5 % (2642 km?). We also found that the highest upwelling intensities
occur exclusively in the Atlantic East Pacific mangrove region, a key environmental contrast to the Indo-West
Pacific. In conclusion, our study demonstrates that upwelling systems are one factor shaping global mangrove
distribution in a strongly scale-dependent manner, with larger, contiguous patches exhibiting a markedly
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stronger response. These insights emphasise the need to incorporate upwelling intensity and spatial scale into
global mangrove conservation and management strategies. This integration is essential to address the complex
interplay of environmental factors under shifting oceanographic and climatic conditions.

1. Introduction

Mangrove ecosystems occur worldwide along tropical and subtrop-
ical coastlines. They are located at the land-sea interface and are influ-
enced by terrestrial and oceanographic abiotic factors (Tomlinson,
2016). The world mangrove distribution is delimited at approximately
30° latitude on either side of the equator, with a few exceptions (Duke,
1992; Duke et al., 1998; Giri et al., 2011; Bunting et al., 2022). For many
years, two central questions regarding the global distribution of man-
groves have intrigued researchers: What limits their range? and What
restricts their expansion? (Quisthoudt, 2013; Duke et al., 1998; Osland
et al., 2017a; Ximenes et al., 2021, 2023).

Historically, sea surface temperature (SST) was considered the pri-
mary determinant of mangrove distribution (Barth, 1982; Hutchings and
Saenger, 1987; Woodroffe and Grindrod, 1991; Duke et al., 1998).
However, a multifactorial framework is now recognised, in which
minimum air temperature, precipitation, and other climatic variables
also play pivotal roles (Saenger, 2002; Duke, 2006; Semeniuk, 2013;
Osland et al., 2017a, 2017b; Cavanaugh et al., 2018; Ximenes et al.,
2021). Mangrove species are particularly sensitive to cold, with distri-
bution limits evident in regions such as China and North America (Chen
etal., 2017; Wu et al., 2018; Stuart et al., 2007; Cavanaugh et al., 2014;
Osland et al., 2017a). While the role of SST in defining mangrove range
is well documented, the influence of low SST on propagule establish-
ment and dispersal is less understood (McMillan, 1971; Steinke and
Naidoo, 1991; Ximenes et al., 2018). Different species have different
temperature requirements, like in Avicennia marina and Avicennia
schaueriana. Other species, like Laguncularia racemosa, can handle lower
temperatures better (Steinke and Naidoo, 1991; Oliveira, 2005; Santos
Borges et al., 2019). Another study suggest that water temperature
thresholds are species-specific and critical for understanding mangrove
distribution and abundance (Li et al., 2024).

Upwelling events driven by coastal divergence due to Ekman trans-
port, bring cold, nutrient-rich waters to the surface (Smith, 1968).
Prevailing Wind stress and Earth’s rotation cause surface waters to move
90° to the right in the northern hemisphere and to the left in the
southern hemisphere, allowing deep waters to rise (Smith, 1968). While
this enhances nutrient availability (e.g. Fréon et al., 2009), it also cools
surface waters, which can inhibit mangrove seedling growth. High up-
welling intensities decrease sea surface temperatures (SST) by 3 °C to
8 °C, depending on site-specific and seasonal factors (Guimaraens and
Coutinho, 1996; Campos et al., 2013), and extreme cases, such as along
Florida’s coast, can drop SST by up to 11 °C in ten days (Pitts and Smith,
1997).

Globally, upwelling varies in intensity and spatial extent (Wang
et al., 2015), and is influenced by large-scale phenomena like El Nino,
which suppresses upwelling in areas such as the Peruvian coast. Four
major high-intensity coastal upwelling systems are linked to EBC, which
close subtropical gyres in ocean basins. These systems, known as Eastern
Boundary Upwelling Ecosystems (EBUEs), significantly affect marine
species distributions (Fréon et al., 2009), with upwelling events playing
crucial roles in shaping ecosystems globally (Guimaraens and Coutinho,
1996; Macpherson, 2002; Fréon et al., 2009; Trainer et al., 2010; Menge
and Menge, 2013; Armbrecht et al., 2014; Fenberg et al., 2015; Lourengo
et al., 2016). These upwelling systems affect mangrove distributions
both directly through low SST and indirectly by inducing aridity. For
example, seasonal upwelling in the northern Arabian Sea contributes to
coastal aridity (Lacerda, 2002), and upwelling zones coincide with
mangrove distribution limits along the southwestern coast of Africa
(Benguela Upwelling), the western coast of Australia, and South

America’s western coast (Humboldt Current) (Chapman, 1975).

High-intensity upwelling events in the Peruvian coast, linked to the
Humboldt Current, restrict mangroves (Woodroffe and Grindrod, 1991;
Lacerda and Schaeffer-Novelli, 1999), and upwelling associated with the
California Current affects mangrove limits (Lacerda, 2002). In Brazil, the
eastern limit of South American mangroves is at approximately 28°30'S
latitude (Schaeffer-Novelli et al., 1990; Soares et al., 2012). Among
various factors affecting mangrove distribution, upwelling is likely an
additional process influencing the survival of propagules dispersed
southward by the Brazil Current, particularly during spring and summer
when this area experiences stronger localised upwelling (Campos et al.,
2013; Ximenes et al., 2021). The pronounced gradient between air and
water temperatures in upwelling zones is an important factor influ-
encing species-specific responses to upwelling intensity. This differential
effect may explain the varied impacts of upwelling on mangrove species
and their distributions (Li et al., 2024). Despite growing recognition of
upwelling’s role in mangrove ecosystems, the global relationship be-
tween upwelling systems and mangrove distributions remains under-
explored (Chapman, 1975; Li et al., 2022a, 2022b).

This study aims to evaluate the global relationship between up-
welling events and mangrove distribution, with a particular emphasis on
how upwelling intensities influence mangrove range limits and spatial
extent. Specifically, we address the following questions: (i) Is there a
spatial correlation between mangrove range limits and upwelling sys-
tems? (ii) Do mangrove area extents vary across different upwelling
intensities? (iii) Are there discernible differences in upwelling intensities
between the two major mangrove biogeographic regions, the Atlantic
East Pacific (AEP) and the Indo-West Pacific (IWP)?

We hypothesise that regions characterised by lower upwelling in-
tensities will support larger and more contiguous mangrove areas, as
higher sea surface temperatures (SST) create optimal conditions for
mangrove growth. Conversely, higher upwelling intensities, which are
associated with cooler SSTs, are expected to contribute to more
restricted mangrove distributions and reduced range limits.

2. Material and methods
2.1. Data

2.1.1. Upwelling presence and global map of upwelling intensity

The analysis focused on the relationship between upwelling in-
tensities and mangrove areas. The continuous global map of upwelling
intensity was obtained from the DataBasin product offered by The Na-
ture Conservancy (accessible at https://databasin.org/) (Hoekstra et al.,
2010). This map illustrates upwelling intensity data utilising Marine
Provinces sensu Spalding et al. (2007) and classifies upwelling intensity
into four tiers as delineated by Hoekstra et al. (2010): Level 1 (present),
Level 2 (significant), Level 3 (important), and Level 4 (very important).
Levels 1 and 2 signify low upwelling intensity, level 3 indicates inter-
mediate intensity, and level 4 represents high intensity. Approximately
6.1 % (8556 km?) of the total mangrove area mapped by Bunting et al.
(2022) had no upwelling data and was excluded from the analysis.
Because the upwelling map predominantly covers marine areas and
some coastal mangroves fell outside its polygons, a 50 km buffer was
generated around the upwelling map to ensure that all relevant
mangrove polygons from the Global Mangrove Watch (GMW) map were
accurately selected (more details in the GMW Section 2.1.2).

Data on well-developed upwelling systems were collected from
multiple research sources (Appendix S1), and they were examined in
relation to mangrove range limits. Previous studies, including Varela
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et al. (2015) and other authors, have identified and delineated coastal
upwelling zones, as referenced in the literature (Appendix S1). These
zones were marked with blue lines and include areas such as Benguela,
Canary, Peru, Baja California, South Africa, Brazil, Somalia-Oman,
India, China, southern Australia, and New Zealand. The relationship
between the upwelling events and the mangrove distribution boundaries
was assessed by delineating their corresponding influence zones (refer to
Section 3 and Fig. 1).

2.1.2. Global mangrove map

The Global Mangrove Watch (GMW), initiated in 2011 as part of the
JAXA Kyoto / Carbon Initiative, is a collaborative project led by Aber-
ystwyth University and Solo Earth Observation, in partnership with
Wetlands International, the International Water Management Institute,
and the UN Environment World Conservation Monitoring Centre (U.K.)
(Bunting et al., 2022). GMW has established a comprehensive global
baseline map of mangroves for 2010. Additionally, it has monitored
changes in mangrove coverage from 1996 to 2020 using satellite data
from JERS-1 SAR, ALOS PALSAR, ALOS-2 PALSAR-2 and Landsat.

For this study, we utilised the Global Mangrove Watch Map Version 3
(Bunting et al., 2022) to determine the total mangrove area across
different levels of upwelling intensity (see section 2.1.1). Despite its
comprehensive coverage, the accuracy of mangrove range limits in
global maps can be variable (Ximenes et al., 2023). To obtain precise
geographical data on mangrove limits, we referred to the study by
Quisthoudt et al. (2012), which provided validated global mangrove
range limits through fieldwork, local expert surveys, and scientific
literature. In this study, we define mangrove discontinuities as distinct
breaks or gaps in the continuity of mangrove forest cover along coast-
lines. These discontinuities are characterised by the presence of man-
groves in certain areas and their absence in others, despite seemingly
suitable conditions. Potential factors influencing these gaps include
temperature fluctuations, salinity changes, geographical barriers, and
anthropogenic activities. Our objective is to assess whether upwelling
systems contribute to these mangrove discontinuities.

2.2. Models and statistical analysis

Mangrove ecosystems were mapped using the Global Mangrove
Watch Map (Version 3) at a 30 m resolution, processed in QGIS. Up-
welling intensity values (Hoekstra et al., 2010) were assigned to each
mangrove polygon. Records with invalid or missing values (e.g., zero,
negative, or erroneous entries such as —9999) were removed, and only
those polygons with upwelling intensity classified as 1, 2, 3, or 4 were
retained. Because spatial scale may influence the detected relationship
between upwelling and mangrove extent, the dataset was stratified into
subsets based on different minimum area thresholds. Analyses were
conducted for patches with areas >5 ha (n = 85,665), >50 ha (n =
21,655), >100 ha (n = 13,926), >200 ha (n = 8602) and > 300 ha (n
6319). These thresholds were selected to assess how local disturbances
and edge effects in smaller patches might obscure broader environ-
mental controls that become more evident in larger, contiguous
mangrove stands. To mitigate issues related to data skewness, a loga-
rithmic transformation was applied to the mangrove area (in hectares),
generating the variable log area hectares. We used an Ordinary Least
Squares (OLS) regression to figure out how the area of mangroves
related to the strength of the upwelling in each subset. We specified the
regression model as follows:

area_hectares = f; + f; - (upwell_imp7 Treatment(4) )
+ f,-log(area_hectares) + ¢,
where f is the intercept, f; represents the coefficient for the categorical

upwelling intensity levels (with class 4 as the reference), f5 is the co-
efficient for the log-transformed mangrove area, and ¢ is the error term.
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Variance Inflation Factors (VIFs) were computed to confirm that
multicollinearity was low among predictors. Robust standard errors
(with heteroscedasticity and autocorrelation consistent corrections
using one lag) were applied in all regressions. All analyses were per-
formed using Python (version 3.9). Diagnostic tests were also conducted
to validate the assumptions of the OLS model. The distribution of re-
siduals was inspected using histograms and kernel density estimates
(KDE) to assess normality, and scatter plots of residuals versus fitted
values were generated to identify patterns indicative of hetero-
scedasticity or autocorrelation. The Durbin-Watson statistic was
computed to evaluate the presence of autocorrelation (with values near
2 indicating minimal autocorrelation), and the Anderson-Darling test
was applied to assess residual normality.

Model fit was evaluated using the Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC), and the coefficient of
determination (R%); these metrics, along with the regression summary,
were used to determine the optimal model specification. Finally, visu-
alisations (e.g., bar charts and other graphical representations) were
employed to assess the distribution of mangrove areas across different
upwelling intensity classes, thereby facilitating a comprehensive eval-
uation of spatial patterns.

3. Results

A global analysis reveals a significant spatial correlation between the
distribution limits of mangroves and upwelling systems. Eight distinct
mangrove range boundaries were found to coincide spatially with up-
welling events. These locations include Baja California, Florida, Peru,
southern Brazil, Angola, South Africa, southern China, and New Zea-
land. However, this pattern was not observed in regions such as western
and southern Australia or southern Japan, where mangrove distribu-
tions do not align with upwelling systems (Fig. 1). Our analyses reveal a
pronounced scale dependent relationship between upwelling intensity
and mangrove area. When considering all mangrove patches >5ha (n =
85,665), the OLS model yielded an R? of 0.203. In this dataset, upwelling
class 1 reached only marginal significance, while the log transformed
area variable was highly

significant. This relatively low explanatory power suggests that the
small, fragmented patches, which are subject to local disturbances and
edge effects, may obscure broader environmental factors.

For patches >50 ha (n = 21,655), the model’s explanatory power
improved substantially, with the R? increasing to 0.370. In this subset,
all upwelling categories became statistically significant, and the asso-
ciation between upwelling intensity and mangrove area was markedly
strengthened. When the analysis was restricted to patches >100 ha (n =
13,926), the R? further increased to 0.432, reflecting even stronger as-
sociations between upwelling intensity and mangrove area. Subsequent
increases in the minimum patch size threshold to >200 ha (n = 8602)
and > 300 ha (n = 6319) resulted in R? values of 0.497 and 0.537,
respectively. In these larger, more contiguous systems, the statistical
relationship between upwelling intensity and mangrove area became
progressively more robust.

The three largest mangrove ecosystems, the Amazonian mangrove
forest, the Sundarbans, and the mangroves of Northern Australia
(Queensland and the Northern Territory), are located within these low-
upwelling intensity areas (Figs. 2). As anticipated, regions with lower
upwelling intensities have significantly more extensive mangrove for-
ests. Specifically, 47.7 % of the global mangrove area is 66,763 km?
(Fig. 3). This observation is particularly evident in the Indo-West Pacific
(IWP) region, where upwelling intensity is generally lower than in major
Eastern Boundary Upwelling Ecosystems (EBUES).

Mangrove forests are scarse in regions with the highest upwelling
intensity (level 4), which comprise only 1.9 % of the global mangrove
area (2643 krnz) (Figs. 3). In the Gambia River and the Saloum Delta
National Park in Senegal, there are around 2643 km? of mangrove areas
within the highest levels of upwelling intensity (Figs. 2 and 3). The
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Mangroves are represented by dark green.

southern coast of South Africa, characterised by the Agulhas upwelling,
represents a clear example of a mangrove range boundary (Fig. 2). Along
the South African coast, mangroves are present to the north of Port
Alfred but absent near Port Alfred and Port Elizabeth, where cold
inshore waters associated with the Agulhas upwelling system limit
mangrove growth (Lutjeharms et al., 2000) (Fig. 2). In New Zealand, the
upwelling system near Kahurangi Point and Cape Farewell defines the
southernmost boundary of mangrove distribution (Stanton, 1976;
Bradford and Roberts, 1978; Shirtcliffe et al., 1990; Vincent et al., 1991;
Waters and Roy, 2004; Blanchette et al., 2009) (Fig. 2). On the southern
shelves of Australia, the Bonney upwelling system in southern Australia,

influenced by the relatively weak upwelling induced by the Leeuwin
Current, contributes to the absence of mangroves along the coastline
between Portland and Cape Jaffa (Rochford, 1977; Kampf, 2015;
McClatchie et al., 2006) (Fig. 2). These observations highlight the crit-
ical role of upwelling intensity in determining mangrove distribution
limits along these coastal regions. The presence of this upwelling is
likely a contributing factor to the absence of mangroves in these regions
(Kampf et al., 2004; McClatchie et al., 2006).

The Somalia-Oman upwelling system along the East African coast,
from northern Somalia to Oman, is associated with a near absence of
mangroves or the presence of only sparse populations dominated by a
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single species, Avicennia marina (Fig. 2) (Elliott and Savidge, 1990; Shi
et al., 2000b; Izumo, 2008; deCastro et al., 2016). These zones exhibit a
significant discontinuity in the otherwise continuous mangrove distri-
butions along tropical coasts. Upwelling in the southeastern Arabian
Sea, which influences the western coast of India between latitudes 8°
and 14°N, appears to be linked to the limited presence of mangrove
forests in this region, as shown in several global maps (Giri et al., 2011).
Historically, mangroves were thought to extend only up to 18°N along
the western coast of India (Fig. 2) (Smitha et al., 2014). This pattern of
distribution is mostly due to the area’s steep, vertical estuarine slopes
and the lack of delta formation, which makes the intertidal zones too
narrow for mangroves to grow (Kathiresan, 2018). However, recent
updates to the Global Mangrove Watch v.3 database indicate that
mangroves are now extending further north, beyond areas where up-
welling intensity was previously thought to prevent their growth.
Therefore, we need to conduct more ground-truth checks to ensure the
accuracy of the updated mangrove distribution in areas with varying
levels of upwelling.

Notably, sparse mangrove patches are observed in regions of high
upwelling intensity. Within these zones of level 4, mangrove stands are
limited to areas in Senegal and Gambia, situated near the boundary
between levels 3 and 4. Mangroves in Mauritania were not mapped by
the GMW map and are therefore not included in the highest upwelling
category. Additionally, these mangroves are influenced by the Canary
Upwelling, a prominent feature of the Eastern Boundary Upwelling
Ecosystems (EBUEs) (Fig. 1 and Fig. 2).

4. Discussion

These findings strongly support our hypothesis that upwelling in-
tensity exerts a scale-dependent influence on mangrove distribution.
The relatively low R? observed for patches >5 ha indicates that when
smaller and more fragmented mangrove patches are included, localised
disturbances and edge effects may mask the broader environmental
signal imparted by upwelling. Conversely, as the minimum area
threshold increases, the models reveal both higher explanatory power
and more robust, statistically significant effects of upwelling intensity.
The enhanced model performance for larger mangrove stands (>50 ha,
>100 ha, >200 ha, and > 300 ha) suggests that environmental processes
such as upwelling-driven cooling play a more determinative role in
shaping extensive, contiguous mangrove ecosystems. In these systems,

the impact of upwelling becomes increasingly pronounced, likely due to
the reduced influence of localised factors. This interpretation is in line
with previous studies that have highlighted the role of oceanographic
processes in defining mangrove distribution limits. The most prominent
upwelling systems that may act as barriers to the dispersal of mangrove
propagules are in the EBCs in the AEP regions, where mangrove distri-
butions are limited along the western coastlines of Africa and America.
This pattern aligns with earlier observations in the literature (Chapman,
1975; Woodroffe and Grindrod, 1991; Lacerda and Schaeffer-Novelli,
1999; Lacerda, 2002).

Various studies have suggested that the northernmost mangrove
limit on the southwestern coast of Africa is mainly driven by aridity
rather than by temperature (Saenger, 2002). Apart from the western
coasts of Australia and California, precipitation changes, rather than
temperature, may be more influential in shaping mangrove limits in
regions like Peru, Mauritania, and Namibia (Osland et al., 2017a).
Consequently, aridity plays a key role in defining mangrove limits
(Duke, 1992; Saenger, 2002; Quisthoudt et al., 2012; Osland et al.,
2017a). According to Dupont et al. (2005), the Namibian upwelling
(part of EBUES) significantly contributes to coastal aridity. Upwelling
systems, such as those off Peru, Baja California, the Canary Islands, and
Namibia, create deserts like the Atacama (Peruvian upwelling), Sonoran
(Californian upwelling), Sahara (Canary upwelling), and Namibia de-
serts (Benguela upwelling) (Shi et al., 2000a; Houston and Hartley,
2003; Adams, 2007). Intensified upwelling can exacerbate coastal
aridity, affecting terrestrial vegetation (Shi et al., 2000a) and probably
also mangrove ecosystems. An interesting observation, open for debate,
is the lack of reported mangroves in Cabo Verde. This fact of mangroves
along the Cabo Verde coastal areas is particularly intriguing because, in
terms of geomorphology and climate zone, the archipelago appears to be
suitable for mangrove colonisation (15°-17° N), even at low abundance,
much as in Mauritania (Dahdouh-Guebas and Koedam, 2001). We sug-
gested that the high-intensity upwelling events associated with the Ca-
nary upwelling system may be a significant factor limiting mangrove
establishment in this region.

The equatorward West Australian Current is displaced offshore by
the poleward-flowing Leeuwin Current, which transports warm waters
from near-equatorial regions during winter (Smith et al., 1991; Pearce,
1991). Strong north-south thermohaline gradients between the Indo-
nesian Throughflow and southwestern Australian waters are considered
the primary force driving the Leeuwin Current (Batteen et al., 2007).
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Importantly, this current suppresses the development of strong upwell-
ing cells despite favourable wind conditions (Hanson et al., 2005; Varela
et al., 2015). The warm waters carried by the Leeuwin Current signifi-
cantly influence marine communities along the southwestern Australian
coast (Morgan and Wells, 1991), creating a stark contrast with the
western coasts of South America and Africa, where strong upwelling
prevails. Although typical EBC regions exhibit pronounced upwelling,
the presence of the Leeuwin Current renders the western coast of
Australia an exception to these global patterns. Our analysis supports the
view that the expansion of mangroves along the western Australian
coast is closely linked to the suppression of strong upwelling. The
anomalously warm coastal waters provided by the Leeuwin Current, as
proposed by Semeniuk et al. (2000), likely enable mangroves to extend
beyond 30°S in this region. In contrast with studies suggesting that
restricted mangrove expansion is due to the influence of upwelling
systems along the western coast of Australia (Chapman, 1975; Wood-
roffe and Grindrod, 1991).

In WBC regions, upwelling occurs at lower intensities than in EBC
regions, making mangrove range limits less sensitive to upwelling and
more responsive to factors such as cold air temperatures and reduced
precipitation. For instance, in Japan the mangrove range (32°22'N) is
associated with the warm waters of the Kuroshio Current, which creates
favourable conditions for mangrove growth at higher latitudes
(Woodroffe and Grindrod, 1991). Similarly, high-latitude mangrove
limits are observed along the Gulf Stream on North America’s eastern
coast (Giri et al., 2011; Ward et al., 2016), the Brazil Current on South
America’s eastern coast (Soares et al., 2012), and the Agulhas Current
off South Africa (32°36'S).The expansion of mangroves towards higher
latitudes in the two major biogeographic regions (AEP and IWP) can be
explained by the fact that the WBCs have much stronger, warmer, and
faster currents than their eastern counterparts, the EBCs. Upwelling
scenarios offer significant potential for advancing the understanding and
management of mangrove ecosystems.

Future climate change projections suggest increases and decreases in
upwelling intensity across various regions, potentially altering coastal
winds and sea surface temperatures (SST) (Bakun, 1990; Sydeman et al.,
2014; Varela et al., 2015; Wang et al., 2015). These changes could have
considerable effects on mangrove distribution. Overall, the marked
differences in model fit across spatial scales highlight the critical
importance of considering scale in ecological assessments. By focusing
on larger, more contiguous mangrove patches, where the influence of
localised disturbances is minimised, our analysis provides a clearer
understanding of how upwelling intensity and its associated climatic
effects govern mangrove spatial extent.

Upwelling can be inferred from satellite data, mainly using sea sur-
face temperature (SST) and wind datasets (Benazzouz et al., 2014),
providing valuable information for future research aimed at correlating
upwelling intensities with key mangrove structural and functional pa-
rameters such as biomass, tree height, productivity, and carbon storage.
However, the absence of a comprehensive global upwelling index public
available limits cross-regional studies and impedes direct comparisons.
These insights are vital for refining global models of mangrove distri-
bution and for informing conservation strategies under shifting ocean-
ographic and climatic conditions. Moreover, while remote sensing offers
a broad-scale perspective, the importance of ground-truth data and in-
situ samples remains paramount. In addition, each mangrove species
exhibits its own physiological threshold to environmental factors,
underscoring the need for further laboratory studies encompassing
diverse species to better understand the ecological niche and limits of
each. This holistic approach will not only improve predictive models but
also enhance conservation efforts in the face of ongoing climate change
and evolving oceanographic dynamics.

5. Conclusion

This study demonstrates that upwelling systems play a critical role in
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shaping global mangrove distribution, with their influence being
strongly scale-dependent. Our analyses reveal that while smaller
mangrove patches (>5 ha) exhibit limited and marginal responses to
upwelling effects, larger contiguous mangrove systems (>50 ha to >300
ha) show a progressively stronger relationship. These findings indicate
that environmental processes associated with upwelling, such as cold-
water-induced cooling and increased coastal aridity, are more
apparent in extensive mangrove areas, where localised disturbances are
minimised. These findings call attention to the importance of spatial
scale in ecological assessments and provide critical insights for global-
scale evaluations of mangrove dynamics. While previous research has
acknowledged upwelling as a limiting factor for mangrove distribution,
this study adds to the field by emphasising the complex interactions
between upwelling and global mangrove distribution and area extent, a
relationship previously underexplored.

The results highlight that upwelling significantly affects mangrove
ecosystems by altering sea surface temperatures and creating climatic
extremes that hinder mangrove growth. This effect is particularly
evident in regions influenced by Eastern Boundary Currents, where high
upwelling intensity correlates with sparse mangrove presence. In
contrast, regions under the influence of warm Western Boundary Cur-
rents exhibit reduced upwelling, allowing mangroves to thrive at higher
latitudes. Our findings indicate that the intensity and frequency of up-
welling events significantly influence the response of mangrove eco-
systems. Mangroves are notably absent from high-upwelling regions
along the western coastlines of Africa and the Americas in the Atlantic
East Pacific (AEP) biogeographic region. This absence is likely due to the
unfavourable conditions generated by EBCs, which inhibit mangrove
growth. In contrast, the Indo-West Pacific (IWP) region supports
mangrove populations at higher latitudes, likely benefiting from
reduced upwelling intensities associated with WBCs.

While marine currents do affect coastal ecosystems, it is the localised
upwelling phenomena, influenced by specific geomorphological condi-
tions, that play a more crucial role in shaping mangrove presence.
Moderate upwelling intensity has been shown to impact essential
phenological stages of mangrove species, including propagule produc-
tion, which may limit the expansion of mangroves in regions with
stronger upwelling. Consequently, large, uninterrupted mangrove ex-
panses are typically found in areas with diminished upwelling intensity,
where favourable environmental conditions, such as suitable geo-
morphology, support their development.

Our findings have important implications for global mangrove con-
servation and management. They suggest that accurate predictions of
mangrove distribution and resilience require the incorporation of up-
welling intensity as one more environmental variable. Moreover, these
insights pave the way for future research into the complex interactions
between oceanographic processes and coastal vegetation dynamics,
particularly in the context of ongoing climate change. In summary, by
elucidating the scale-dependent effects of upwelling on the mangrove
area, this study provides critical insights into the biogeography of
mangroves and highlights the need for integrated, multidisciplinary
approaches to understand and conserve these vital ecosystems. These
findings open new avenues for future research, offering new perspec-
tives on how climate-related phenomena such as upwelling influence
mangrove biodiversity and ecosystem services globally.
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